Skip to main content
Log in

Formation, geometric properties, and surface activities of nSi clusters (n = 1 − 4) doped graphene as metal-free catalyst

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The formation processes, electronic, and catalytic properties of nSi (n = 1 − 4) atom-doped divacancy graphene (nSi-graphene) are discussed using density functional theory calculations. First, the formation mechanisms of nSi-graphene sheets are investigated in detail. According to the formation energies values, it is found that the tetrahedral 4Si cluster-anchored graphene has the least energy as compared with that of others. Second, the adsorption behaviors and electronic structures of adsorbed species on the 1Si-graphene and 4Si-graphene sheets are comparably analyzed. The adsorption of O2 molecule is more stable than that of the CO molecule; thus, the possible CO oxidation reactions on different nSi-graphene surfaces are investigated through Eley–Rideal. In the complete CO oxidation reactions, the formation process of CO3 complex on the 1Si-graphene sheet is the rate-controlling step, while the interaction between CO3 and CO on the 4Si-graphene has a relatively large energy barrier. This result illustrates that the different numbers of Si atoms can regulate the surface curvature and activities of graphene sheets, which provides a theoretical reference for designing the graphene-based metal-free catalyst in energy-related devices.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Geim, K. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    ADS  Google Scholar 

  2. B.F. Machado, P. Serp, Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54–75 (2012)

    Google Scholar 

  3. C.T. Campbell, Catalyst-support interactions: electronic perturbations. Nat. Chem. 4, 597–598 (2012)

    Google Scholar 

  4. J.A. Rogers, Electronic materials: making graphene for macroelectronics. Nat. Nanotechnol. 3, 254–255 (2008)

    ADS  Google Scholar 

  5. I. Jung, M. Pelton, R. Piner, D.A. Dikin, S. Stankovich, S. Watcharotone, M. Hausner, R.S. Ruoff, Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7, 3569–3575 (2007)

    ADS  Google Scholar 

  6. A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902–907 (2008)

    ADS  Google Scholar 

  7. X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. Piner, L. Colombo, R. Ruoff, Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano Lett. 9, 4359–4363 (2009)

    ADS  Google Scholar 

  8. G. Eda, M. Chhowalla, Graphene-based composite thin films for electronics. Nano Lett. 9, 814–818 (2009)

    ADS  Google Scholar 

  9. A. Reina, X. Jia, J. Ho, D. Nezich, H. Son, V. Bulovic, M.S. Dresselhaus, J. Kong, Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 9, 30–35 (2008)

    ADS  Google Scholar 

  10. M. Pumera, Graphene-based nanomaterials for energy storage. Energy Environ. Sci. 4, 668–674 (2011)

    Google Scholar 

  11. C. Huang, C. Li, G. Shi, Graphene based catalysts. Energy Environ. Sci. 5, 8848–8868 (2012)

    Google Scholar 

  12. X. Miao, S. Tongay, M.K. Petterson, K. Berke, A.G. Rinzler, B.R. Appleton, A.F. Hebard, High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745–2750 (2012)

    ADS  Google Scholar 

  13. C.-H. Lu, H.-H. Yang, C.-L. Zhu, X. Chen, G.-N. Chen, A graphene platform for sensing biomolecules. Angew. Chem. 121, 4879–4881 (2009)

    Google Scholar 

  14. O. Leenaerts, B. Partoens, F. Peeters, Adsorption of H2O, NH3, CO, NO2, and NO on graphene: a first-principles study. Phys. Rev. B 77, 125416 (2008)

    ADS  Google Scholar 

  15. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, Structural defects in graphene. ACS Nano 5, 26–41 (2011)

    Google Scholar 

  16. G.-D. Lee, C.Z. Wang, E. Yoon, N.-M. Hwang, D.-Y. Kim, K.M. Ho, Diffusion, coalescence, and reconstruction of vacancy defects in graphene layers. Phys. Rev. Lett. 95, 205501 (2005)

    ADS  Google Scholar 

  17. Y. Kim, J. Ihm, E. Yoon, G.-D. Lee, Dynamics and stability of divacancy defects in graphene. Phys. Rev. B 84, 075445 (2011)

    ADS  Google Scholar 

  18. H. Liu, Y. Liu, D. Zhu, Chemical doping of graphene. J. Mater. Chem. 21, 3335–3345 (2011)

    Google Scholar 

  19. D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009)

    ADS  Google Scholar 

  20. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, J.W. Choi, Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 2472–2477 (2011)

    ADS  Google Scholar 

  21. D. Usachov, O. Vilkov, A. Grüneis, D. Haberer, A. Fedorov, V. Adamchuk, A. Preobrajenski, P. Dudin, A. Barinov, M. Oehzelt, Nitrogen-doped graphene: efficient growth, structure, and electronic properties. Nano Lett. 11, 5401–5407 (2011)

    ADS  Google Scholar 

  22. T.B. Martins, R.H. Miwa, A.J.R. da Silva, A. Fazzio, Electronic and transport properties of boron-doped graphene nanoribbons. Phys. Rev. Lett. 98, 196803 (2007)

    ADS  Google Scholar 

  23. L. Panchakarla, K. Subrahmanyam, S. Saha, A. Govindaraj, H. Krishnamurthy, U. Waghmare, C. Rao, Synthesis, structure, and properties of boron-and nitrogen-doped graphene. Adv. Mater. 21, 4726–4730 (2009)

    Google Scholar 

  24. H. Wang, Q. Wang, Y. Cheng, K. Li, Y. Yao, Q. Zhang, C. Dong, P. Wang, U. Schwingenschlögl, W. Yang, X.X. Zhang, Doping monolayer graphene with single atom substitutions. Nano Lett. 12, 141–144 (2012)

    ADS  Google Scholar 

  25. A.W. Robertson, B. Montanari, K. He, J. Kim, C.S. Allen, Y.A. Wu, J. Olivier, J. Neethling, N. Harrison, A.I. Kirkland, Dynamics of single Fe atoms in graphene vacancies. Nano Lett. 13, 1468–1475 (2013)

    ADS  Google Scholar 

  26. Z. He, K. He, A.W. Robertson, A.I. Kirkland, D. Kim, J. Ihm, E. Yoon, G.-D. Lee, J.H. Warner, Atomic structure and dynamics of metal dopant pairs in graphene. Nano Lett. 14, 3766–3772 (2014)

    ADS  Google Scholar 

  27. P. Venezuela, R. Muniz, A. Costa, D. Edwards, S. Power, M. Ferreira, Emergence of local magnetic moments in doped graphene-related materials. Phys. Rev. B 80, 241413 (2009)

    ADS  Google Scholar 

  28. A. Ambrosi, S.Y. Chee, B. Khezri, R.D. Webster, Z. Sofer, M. Pumera, Metallic impurities in graphenes prepared from graphite can dramatically influence their properties. Angew. Chem. Int. Ed. 51, 500–503 (2012)

    Google Scholar 

  29. Y. Mao, G.M. Stocks, J. Zhong, First-principles study of the doping effects in bilayer graphene. New J. Phys. 12, 033046 (2010)

    ADS  Google Scholar 

  30. R. Miwa, T. Martins, A. Fazzio, Hydrogen adsorption on boron doped graphene: an ab initio study. Nanotechnology 19, 155708 (2008)

    ADS  Google Scholar 

  31. J. Dai, J. Yuan, P. Giannozzi, Gas adsorption on graphene doped with B, N, Al, and S: a theoretical study. Appl. Phys. Lett. 95, 232105 (2009)

    ADS  Google Scholar 

  32. G. Chen, S.J. Li, Y. Su, V. Wang, H. Mizuseki, Y. Kawazoe, Improved stability and catalytic properties of Au16 cluster supported on graphane. J. Phys. Chem. C 115, 20168–20174 (2011)

    Google Scholar 

  33. L. Qu, Y. Liu, J.-B. Baek, L. Dai, Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321–1326 (2010)

    Google Scholar 

  34. R. Kou, Y. Shao, D. Wang, M.H. Engelhard, J.H. Kwak, J. Wang, V.V. Viswanathan, C. Wang, Y. Lin, Y. Wang, I.A. Aksay, J. Liu, Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction. Electrochem. Commun. 11, 954–957 (2009)

    Google Scholar 

  35. M.J. Lopez, I. Cabria, J.A. Alonso, Palladium clusters anchored on graphene vacancies and their effect on the reversible adsorption of hydrogen. J. Phys. Chem. C 118, 5081–5090 (2014)

    Google Scholar 

  36. D. Sen, R. Thapa, K.K. Chattopadhyay, Small Pd cluster adsorbed double vacancy defect graphene sheet for hydrogen storage: a first-principles study. Int. J. Hydrogen Energy 38, 3041–3049 (2013)

    Google Scholar 

  37. I. Fampiou, A. Ramasubramaniam, CO adsorption on defective graphene-supported Pt13 nanoclusters. J. Phys. Chem. C 117, 19927–19933 (2013)

    Google Scholar 

  38. X. Liu, L. He, Y.-M. Liu, Y. Cao, Supported gold catalysis: from small molecule activation to green chemical synthesis. Acc. Chem. Res. 47, 793–804 (2013)

    Google Scholar 

  39. H.J. Freund, G. Meijer, M. Scheffler, R. Schlogl, M. Wolf, CO Oxidation as a prototypical reaction for heterogeneous processes. Angew. Chem. Int. Ed. 50, 10064–10094 (2011)

    Google Scholar 

  40. E.D. Grayfer, L.S. Kibis, A.I. Stadnichenko, O.Y. Vilkov, A.I. Boronin, E.M. Slavinskaya, O.A. Stonkus, V.E. Fedorov, Ultradisperse Pt nanoparticles anchored on defect sites in oxygen-free few-layer graphene and their catalytic properties in CO oxidation. Carbon 89, 290–299 (2015)

    Google Scholar 

  41. E. Yoo, T. Okada, T. Akita, M. Kohyama, I. Honma, J. Nakamura, Sub-nano-Pt cluster supported on graphene nanosheets for CO tolerant catalysts in polymer electrolyte fuel cells. J. Power Sources 196, 110–115 (2011)

    ADS  Google Scholar 

  42. G. Kim, S.H. Jhi, Carbon monoxide-tolerant platinum nanoparticle catalysts on defect-engineered graphene. ACS Nano 5, 805–810 (2011)

    ADS  Google Scholar 

  43. Y. Tang, Z. Yang, X. Dai, Preventing the CO poisoning on Pt nanocatalyst using appropriate substrate: a first-principles study. J. Nanopart. Res. 14, 844 (2012)

    ADS  Google Scholar 

  44. S.H. Oh, G.B. Hoflund, Low-temperature catalytic carbon monoxide oxidation over hydrous and anhydrous palladium oxide powders. J. Catal. 245, 35–44 (2007)

    Google Scholar 

  45. X.-F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, T. Zhang, Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46, 1740–1748 (2013)

    Google Scholar 

  46. Q.G. Jiang, Z.M. Ao, S. Li, Z. Wen, Density functional theory calculations on the CO catalytic oxidation on Al-embedded graphene. RSC Adv. 4, 20290–20296 (2014)

    Google Scholar 

  47. Y. Tang, X. Dai, Z. Yang, Z. Liu, L. Pan, D. Ma, Z. Lu, Tuning the catalytic property of non-noble metallic impurities in graphene. Carbon 71, 139–149 (2014)

    Google Scholar 

  48. T.-T. Jia, C.-H. Lu, Y.-F. Zhang, W.-K. Chen, A comparative study of CO catalytic oxidation on Pd-anchored graphene oxide and Pd-embedded vacancy graphene. J. Nanopart. Res. 16, 1–11 (2014)

    Google Scholar 

  49. Y. Tang, Z. Yang, X. Dai, D. Ma, Z. Fu, Formation, stabilities, and electronic and catalytic performance of platinum catalyst supported on non-metal-doped graphene. J. Phys. Chem. C 117, 5258–5268 (2013)

    Google Scholar 

  50. Y. Tang, Z. Yang, X. Dai, A theoretical simulation on the catalytic oxidation of CO on Pt/graphene. Phys. Chem. Chem. Phys. 14, 16566–16572 (2012)

    Google Scholar 

  51. M.N. Groves, C. Malardier-Jugroot, M. Jugroot, Improving platinum catalyst durability with a doped graphene support. J. Phys. Chem. C 116, 10548–10556 (2012)

    Google Scholar 

  52. F. Li, J. Zhao, Z. Chen, Fe-anchored graphene oxide: a low-cost and easily accessible catalyst for low-temperature CO oxidation. J. Phys. Chem. C 116, 2507–2514 (2012)

    Google Scholar 

  53. Y. Li, Z. Zhou, G. Yu, W. Chen, Z. Chen, CO catalytic oxidation on iron-embedded graphene: computational quest for low-cost nanocatalysts. J. Phys. Chem. C 114, 6250–6254 (2010)

    Google Scholar 

  54. Y. Tang, J. Zhou, Z. Shen, W. Chen, C. Li, X. Dai, High catalytic activity for CO oxidation on single Fe atom stabilized in graphene vacancies. RSC Adv. 6, 93985–93996 (2016)

    Google Scholar 

  55. E.H. Song, Z. Wen, Q. Jiang, CO catalytic oxidation on copper-embedded graphene. J. Phys. Chem. C 115, 3678–3683 (2011)

    Google Scholar 

  56. Y. Tang, L. Pan, W. Chen, C. Li, Z. Shen, X. Dai, Reaction mechanisms for CO catalytic oxidation on monodisperse Mo atom-embedded graphene. Appl. Phys. A 119, 475–485 (2015)

    ADS  Google Scholar 

  57. C. Ying, G. Bo, Z. Jing-Xiang, C. Qing-Hai, F. Hong-Gang, Si-doped graphene: an ideal sensor for NO- or NO2-detection and metal-free catalyst for N2O-reduction. J. Mol. Model. 18, 2043–2054 (2012)

    Google Scholar 

  58. Y. Tang, Z. Liu, X. Dai, Z. Yang, W. Chen, D. Ma, Z. Lu, Theoretical study on the Si-doped graphene as an efficient metal-free catalyst for CO oxidation. Appl. Surf. Sci. 308, 402–407 (2014)

    ADS  Google Scholar 

  59. G. Yongbing, C. Xianlang, C. Yongyong, Z. Guilin, Z. Xing, W. Jianguo, Atomically dispersed Pd catalysts in graphyne nanopore: formation and reactivity. Nanotechnology 28, 295403 (2017)

    Google Scholar 

  60. H. Qi, P. Yu, Y. Wang, G. Han, H. Liu, Y. Yi, Y. Li, L. Mao, Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J. Am. Chem. Soc. 137, 5260–5263 (2015)

    Google Scholar 

  61. Y. Tang, Z. Lu, W. Chen, W. Li, X. Dai, Geometric stability and reaction activity of Pt clusters adsorbed graphene substrates for catalytic CO oxidation. Phys. Chem. Chem. Phys. 17, 11598–11608 (2015)

    Google Scholar 

  62. N. Jin, J. Han, H. Wang, X. Zhu, Q. Ge, A DFT study of oxygen reduction reaction mechanism over O-doped graphene-supported Pt4, Pt3Fe and Pt3V alloy catalysts. Int. J. Hydrogen Energy 40, 5126–5134 (2015)

    Google Scholar 

  63. G. Ramos-Sánchez, P.B. Balbuena, CO adsorption on Pt clusters supported on graphite. J. Electroanal. Chem. 716, 23–30 (2014)

    Google Scholar 

  64. R. Siburian, J. Nakamura, Formation process of Pt subnano-clusters on graphene nanosheets. J. Phys. Chem. C 116, 22947–22953 (2012)

    Google Scholar 

  65. S. Haldar, B.S. Pujari, S. Bhandary, F. Cossu, O. Eriksson, D.G. Kanhere, B. Sanyal, Fen (n = 1−6) clusters chemisorbed on vacancy defects in graphene: stability, spin-dipole moment, and magnetic anisotropy. Phys. Rev. B 89, 205411 (2014)

    ADS  Google Scholar 

  66. D. Xu, J. Zhao, X. Wang, A density functional theory study of the adsorption of bimetallic FenPtm clusters on defective graphene: structural, electronic, and magnetic properties. J. Nanopart. Res. 15, 1–14 (2013)

    Google Scholar 

  67. S. Karmakar, C. Chowdhury, A. Datta, Noble-metal-supported GeS monolayer as promising single-atom catalyst for CO oxidation. J. Phys. Chem. C 122, 14488–14498 (2018)

    Google Scholar 

  68. C. Chowdhury, A. Datta, Doped boron nitride surfaces: potential metal free bifunctional catalysts for non-aqueous Li–O2 batteries. Phys. Chem. Chem. Phys. 20, 16485–16492 (2018)

    Google Scholar 

  69. K. Bhattacharyya, A. Datta, Visible light driven efficient metal free single atom catalyst supported on nanoporous carbon nitride for nitrogen fixation. Phys. Chem. Chem. Phys. 21, 12346–12352 (2019)

    Google Scholar 

  70. S. Liu, S. Huang, Theoretical insights into the activation of O2 by Pt single atom and Pt4 nanocluster on functionalized graphene support: Critical role of Pt positive polarized charges. Carbon 115, 11–17 (2017)

    Google Scholar 

  71. Z. Gao, A. Li, X. Liu, C. Ma, X. Li, W. Yang, X. Ding, Density functional study of the adsorption of NO on Nin (n = 1, 2, 3 and 4) clusters doped functionalized graphene support. Appl. Surf. Sci. 481, 940–950 (2019)

    ADS  Google Scholar 

  72. C. Chowdhury, A. Datta, Silicon-doped nitrogen-coordinated graphene as electrocatalyst for oxygen reduction reaction. J. Phys. Chem. C 122, 27233–27240 (2018)

    Google Scholar 

  73. Y. Tang, W. Chen, Z. Shen, S. Chang, M. Zhao, X. Dai, Nitrogen coordinated silicon-doped graphene as a potential alternative metal-free catalyst for CO oxidation. Carbon 111, 448–458 (2017)

    Google Scholar 

  74. G. Kresse, J. Furthmüller, Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996)

    Google Scholar 

  75. G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996)

    ADS  Google Scholar 

  76. J. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)

    ADS  Google Scholar 

  77. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999)

    ADS  Google Scholar 

  78. G. Henkelman, A. Arnaldsson, H. Jónsson, A fast and robust algorithm for Bader decomposition of charge density. Comput. Mater. Sci. 36, 354–360 (2006)

    Google Scholar 

  79. G. Henkelman, B. Uberuaga, H. Jónsson, A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000)

    ADS  Google Scholar 

  80. G. Henkelman, H. Jónsson, Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113, 9978–9985 (2000)

    ADS  Google Scholar 

  81. T. Zhu, J. Li, S. Yip, Atomistic study of dislocation loop emission from a crack tip. Phys. Rev. Lett. 93, 25503 (2004)

    ADS  Google Scholar 

  82. M. Dion, H. Rydberg, E. Schröder, D.C. Langreth, B.I. Lundqvist, Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004)

    ADS  Google Scholar 

  83. T. Thonhauser, V.R. Cooper, S. Li, A. Puzder, P. Hyldgaard, D.C. Langreth, Van der Waals density functional: self-consistent potential and the nature of the van der Waals bond. Phys. Rev. B 76, 125112 (2007)

    ADS  Google Scholar 

  84. Y. Tang, W. Chen, Z. Shen, C. Li, D. Ma, X. Dai, A computational study of CO oxidation reactions on metal impurities in graphene divacancies. Phys. Chem. Chem. Phys. 20, 2284–2295 (2018)

    Google Scholar 

  85. A. Alavi, P. Hu, T. Deutsch, P.L. Silvestrelli, J. Hutter, CO oxidation on Pt (111): an ab initio density functional theory study. Phys. Rev. Lett. 80, 3650–3653 (1998)

    ADS  Google Scholar 

  86. M. Ackermann, T. Pedersen, B. Hendriksen, O. Robach, S. Bobaru, I. Popa, C. Quiros, H. Kim, B. Hammer, S. Ferrer, J.W.M. Frenken, Structure and reactivity of surface oxides on Pt (110) during catalytic CO oxidation. Phys. Rev. Lett. 95, 255505 (2005)

    ADS  Google Scholar 

  87. N. Lopez, J.K. Nørskov, Catalytic CO oxidation by a gold nanoparticle: a density functional study. J. Am. Chem. Soc. 124, 11262–11263 (2002)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant no. 61674053, 11904328 and 61904161), the Natural Science Foundation of Henan Province (Grant no. 162300410325), Program for Science & Technology Innovation Talents in Universities of Henan Province (Grant no. 18HASTIT030), the Key Scientific Research Project of Henan College (20A140030) and the key Young Teachers of Henan Province (Grant no. 2017GGJS179). Aid program for Science and Technology Innovative Research Team and Open Research Fund of Zhengzhou Normal University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanan Tang or Xianqi Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 294 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, W., Zhao, G., Teng, D. et al. Formation, geometric properties, and surface activities of nSi clusters (n = 1 − 4) doped graphene as metal-free catalyst. Appl. Phys. A 125, 634 (2019). https://doi.org/10.1007/s00339-019-2940-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2940-y

Navigation