Skip to main content

Advertisement

Log in

Electrocatalytic Decomposition of Formic Acid Catalyzed by M-Embedded Graphene (M = Ni and Cu): A DFT Study

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

In this study, the HCOOH decomposition reaction on nickel (Ni)- and copper (Cu)-embedded graphene surfaces was computationally modeled using density functional theory. The charge density of both graphene surfaces was investigated by bader charge analysis and demonstrated by an electron density difference map. The results proved that HCOOH, HCOO, COOH, HCO, H2O, CO, OH and H structures chemically bonded to both graphene sheets. Moreover, the minimum energy reaction path from HCOOH to CO2 and CO on both graphene surfaces was investigated by breaking the C–O, C–H and O–H bonds. The main intermediate of HCOOH dissociation on Ni and Cu embedded graphene substrates was determined as HCOO. The main product of HCOO decomposition on both graphene surfaces was CO2. In comparison to cis-COOH and trans-COOH, CO2 recovery from HCOO on graphene substrates was less favored.The breakdown of trans-COOH on graphene surfaces was of a more minimal-energy reaction pathway than cis-COOH. In addition, the main product of HCO decomposition on both graphene surfaces was determined to be CO. Finally, it was determined that the minimum energy reaction pathway for HCOOH dissociation on both graphene surfaces was HCOOH → HCOO → CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Schlapbach L, Züttel A (2011) Hydrogen-storage materials for mobile applications. Mater Sustain Energy. https://doi.org/10.1142/9789814317665_0038

    Article  Google Scholar 

  2. Turner JA (2004) Sustainable hydrogen production. Science 305(5686):972–974

    Article  CAS  PubMed  Google Scholar 

  3. Luo Q, Zhang W, Fu CF, Yang J (2018) Single Pd atom and Pd dimer embedded graphene catalyzed formic acid dehydrogenation: a first-principles study. Int J Hydrog Energy 43(14):6997–7006

    Article  CAS  Google Scholar 

  4. Kim Y, Kim SH, Ham HC, Kim DH (2020) Mechanistic insights on aqueous formic acid dehydrogenation over Pd/C catalyst for efficient hydrogen production. J Catal 389:506–516

    Article  CAS  Google Scholar 

  5. Rees NV, Compton RG (2011) Sustainable energy: a review of formic acid electrochemical fuel cells. J Solid State Electrochem 15(10):2095–2100

    Article  CAS  Google Scholar 

  6. Yang M, Wang B, Fan M, Zhang R (2021) HCOOH decomposition over the pure and Ag-modified Pd nanoclusters: ınsight into the effects of cluster size and composition on the activity and selectivity. Chem Eng Sci 229:116016

    Article  CAS  Google Scholar 

  7. Piola L, Fernández-Salas JA, Nahra F, Poater A, Cavallo L, Nolan SP (2017) Ruthenium-catalysed decomposition of formic acid: fuel cell and catalytic applications. Mol Catal 440:184–189

    Article  CAS  Google Scholar 

  8. Brandt K, Steinhausen M, Wandelt K (2008) Catalytic and electro-catalytic oxidation of formic acid on the pure and Cu-modified Pd (1 1 1)-surface. J Electroanal Chem 616(1–2):27–37

    Article  CAS  Google Scholar 

  9. Enthaler S, von Langermann J, Schmidt T (2010) Carbon dioxide and formic acid—the couple for environmental-friendly hydrogen storage? Energy Environ Sci 3(9):1207–1217

    Article  CAS  Google Scholar 

  10. Bulushev DA, Jia L, Beloshapkin S, Ross JR (2012) Improved hydrogen production from formic acid on a Pd/C catalyst doped by potassium. Chem Commun 48(35):4184–4186

    Article  CAS  Google Scholar 

  11. Boddien A, Loges B, Gärtner F, Torborg C, Fumino K, Junge H, Ludwig R, Beller M (2010) Iron-catalyzed hydrogen production from formic acid. J Am Chem Soc 132(26):8924–8934

    Article  CAS  PubMed  Google Scholar 

  12. Boddien A, Gärtner F, Jackstell R, Junge H, Spannenberg A, Baumann W, Ludwig R, Beller M (2010) Ortho-metalation of iron (0) tribenzylphosphine complexes: homogeneous catalysts for the generation of hydrogen from formic acid. Angew Chem Int Ed 49(47):8993–8996

    Article  CAS  Google Scholar 

  13. Zheng T, Stacchiola D, Saldin DK, James J, Sholl DS, Tysoe WT (2005) The structure of formate species on Pd (1 1 1) calculated by density functional theory and determined using low energy electron diffraction. Surf Sci 574(2–3):166–174

    Article  CAS  Google Scholar 

  14. Scaranto J, Mavrikakis M (2016) HCOOH decomposition on Pt (111): a DFT study. Surf Sci 648:201–211

    Article  CAS  Google Scholar 

  15. Li X, Zhu Y, Chen G, Yang G, Wu Z, Sunden B (2017) Theoretical study of solvent effects on the decomposition of formic acid over a Co (111) surface. Int J Hydrog Energy 42(39):24726–24736

    Article  CAS  Google Scholar 

  16. Yuan D, Liao H, Hu W (2019) Assessment of van der Waals inclusive density functional theory methods for adsorption and selective dehydrogenation of formic acid on Pt (111) surface. Phys Chem 21(37):21049–21056

    CAS  Google Scholar 

  17. Bhandari S, Rangarajan S, Maravelias CT, Dumesic JA, Mavrikakis M (2019) Formic acid decomposition on Pt catalysts: DFT, kinetics experiments and microkinetic modeling. In: 2019 North American Catalysis Society Meeting. NAM.

  18. Sims JJ, Ould Hamou CA, Reocreux R, Michel C, Giorgi JB (2018) Adsorption and decomposition of formic acid on cobalt (0001). J Phys Chem C 122(35):20279–20288

    Article  CAS  Google Scholar 

  19. Chen BW, Mavrikakis M (2020) Formic acid: a hydrogen-bonding cocatalyst for formate decomposition. ACS Catal 10(19):10812–10825

    Article  CAS  Google Scholar 

  20. Yoo JS, Zhao ZJ, Nørskov JK, Studt F (2015) Effect of boron modifications of palladium catalysts for the production of hydrogen from formic acid. ACS Catal 5(11):6579–6586

    Article  CAS  Google Scholar 

  21. Bhandari S, Rangarajan S, Maravelias CT, Dumesic JA, Mavrikakis M (2020) Reaction mechanism of vapor-phase formic acid decomposition over platinum catalysts: DFT, reaction kinetics experiments, and microkinetic modeling. ACS Catal 10(7):4112–4126

    Article  CAS  Google Scholar 

  22. Bulushev DA, Bulusheva LG (2021) Catalysts with single metal atoms for the hydrogen production from formic acid. Catal Rev. https://doi.org/10.1080/01614940.2020.1864860

    Article  Google Scholar 

  23. Kovács I, Kiss J, Kónya Z (2020) The potassium-induced decomposition pathway of HCOOH on Rh (111). Catalysts 10(6):675

    Article  CAS  Google Scholar 

  24. Song J, Zhong H, Wu H, Xiao Z, Song H, Shu T, Zeng J (2021) Robust and efficient Pd–Cu bimetallic catalysts with porous structure for formic acid oxidation and a mechanistic study of electrochemical dealloying. Electrocatalysis 12(2):117–126

    Article  CAS  Google Scholar 

  25. Rice C, Ha S, Masel RI, Waszczuk P, Wieckowski A, Barnard T (2002) Direct formic acid fuel cells. J Power Sources 111(1):83–89

    Article  CAS  Google Scholar 

  26. Elnabawy AO, Herron JA, Scaranto J, Mavrikakis M (2018) Structure sensitivity of formic acid electrooxidation on transition metal surfaces: a first-principles study. J Electrochem Soc 165(15):J3109

    Article  CAS  Google Scholar 

  27. Gao W, Keith JA, Anton J, Jacob T (2010) Theoretical elucidation of the competitive electro-oxidation mechanisms of formic acid on Pt (111). J Am Chem Soc 132(51):18377–18385

    Article  PubMed  CAS  Google Scholar 

  28. Li S, Singh S, Dumesic JA, Mavrikakis M (2019) On the nature of active sites for formic acid decomposition on gold catalysts. Catal Sci Technol 9(11):2836–2848

    Article  CAS  Google Scholar 

  29. Jiang K, Zhang HX, Zou S, Cai WB (2014) Electrocatalysis of formic acid on palladium and platinum surfaces: from fundamental mechanisms to fuel cell applications. Phys Chem 16(38):20360–20376

    CAS  Google Scholar 

  30. Zhang J, She Y (2020) Decomposition mechanism of HCOOH on Pt/WC (0001) surfaces: a density functional theory study. Mol Simul 46(13):947–956

    Article  CAS  Google Scholar 

  31. Lv Q, Meng Q, Liu W, Sun N, Jiang K, Ma L, Peng Z, Cai W, Liu C, Ge J, Liu L, Xing W (2018) Pd–PdO interface as active site for HCOOH selective dehydrogenation at ambient condition. J Phys Chem C 122(4):2081–2088

    Article  CAS  Google Scholar 

  32. Yu Z, An X, Kurnia I, Yoshida A, Yang Y, Hao X, Abudula A, Fang Y, Guan G (2020) Full spectrum decomposition of formic acid over γ-Mo2N-based catalysts: from dehydration to dehydrogenation. ACS Catal 10(9):5353–5361

    Article  CAS  Google Scholar 

  33. Jia L, Bulushev DA, Beloshapkin S, Ross JR (2014) Hydrogen production from formic acid vapour over a Pd/C catalyst promoted by potassium salts: Evidence for participation of buffer-like solution in the pores of the catalyst. Appl Catal B 160:35–43

    Article  CAS  Google Scholar 

  34. Gharib A, Arab A (2021) Improved formic acid oxidation using electrodeposited Pd–Cd electrocatalysts in sulfuric acid solution. Int J Hydrog Energy 46(5):3865–3875

    Article  CAS  Google Scholar 

  35. Huang X, Yang Y, Cheng D (2019) Hydrogen generation from formic acid decomposition on Pd–Cu nanoalloys. Int J Hydrog Energy 44(44):24098–24109

    Article  CAS  Google Scholar 

  36. Wang R, Bing Q, Liu JY (2020) Insights into the mechanism of formic acid dehydrogenation on Pd-Co@ Pd core-shell catalysts: a theoretical study. Appl Surf Sci 505:144532

    Article  CAS  Google Scholar 

  37. Xiong Y, Dong J, Huang ZQ, Xin P, Chen W, Wang Y, Li Z, Jin Z, Xing W, Zhuang Z, Ye J, Wei X, Cao R, Gu L, Sun S, Zuhang L, Chen X, Yang H, Chen C, Peng Q, Chang CR, Wang D, Li Y (2020) Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat Nanotechnol 15(5):390–397

    Article  CAS  PubMed  Google Scholar 

  38. Doustkhah E, Hasani M, Ide Y, Assadi MHN (2019) Pd nanoalloys for H2 generation from formic acid. ACS Appl Nano Mater 3(1):22–43

    Article  CAS  Google Scholar 

  39. Feng JR, Wang GC (2021) Theoretical insight into the role of nitrogen in the formic acid decomposition over Pt13/N-GNS. Appl Surf Sci 539:148192

    Article  CAS  Google Scholar 

  40. Yang Y, Xu H, Cao D, Zeng XC, Cheng D (2018) Hydrogen production via efficient formic acid decomposition: engineering the surface structure of Pd-based alloy catalysts by design. ACS Catal 9(1):781–790

    Article  CAS  Google Scholar 

  41. Fang Z, Chen W (2021) Recent advances in formic acid electro-oxidation: from the fundamental mechanism to electrocatalysts. Nanoscale Adv 3(1):94–105

    Article  CAS  Google Scholar 

  42. Liang Z, Song L, Elnabawy AO, Marinkovic N, Mavrikakis M, Adzic RR (2020) Platinum and palladium monolayer electrocatalysts for formic acid oxidation. Top Catal 63(7):742–749

    Article  CAS  Google Scholar 

  43. Sanchez F, Motta D, Roldan A, Hammond C, Villa A, Dimitratos N (2018) Hydrogen generation from additive-free formic acid decomposition under mild conditions by Pd/C: experimental and DFT studies. Top Catal 61(3):254–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sadovskaya EM, Chesalov YA, Goncharov VB, Sobolev VI, Andrushkevich TV (2017) Formic acid decomposition over V-Ti oxide catalyst: mechanism and kinetics. Mol Catal 430:54–62

    Article  CAS  Google Scholar 

  45. Ensafi AA, Karimi-Maleh H, Mallakpour S (2013) A new strategy for the selective determination of glutathione in the presence of nicotinamide adenine dinucleotide (NADH) using a novel modified carbon nanotube paste electrode. Colloid Surf B 104:186–193. https://doi.org/10.1016/j.colsurfb.2012.12.011

    Article  CAS  Google Scholar 

  46. Trillo JM, Munuera G, Criado JM (1972) Catalytic decomposition of formic acid on metal oxides. Catal Rev 7(1):51–86

    Article  CAS  Google Scholar 

  47. Noto Y, Fukuda K, Onishi T, Tamaru K (1967) Mechanism of formic acid decomposition over dehydrogenation catalysts. J Chem Soc Faraday Trans 63:3081–3087

    Article  CAS  Google Scholar 

  48. Liu D, Gao ZY, Wang XC, Zeng J, Li YM (2017) DFT study of hydrogen production from formic acid decomposition on Pd-Au alloy nanoclusters. Appl Surf Sci 426:194–205

    Article  CAS  Google Scholar 

  49. Tang Y, Roberts CA, Perkins RT, Wachs IE (2016) Revisiting formic acid decomposition on metallic powder catalysts: exploding the HCOOH decomposition volcano curve. Surf Sci 650:103–110

    Article  CAS  Google Scholar 

  50. Yang F, Zhang Y, Liu PF, Cui Y, Ge XR, Jing QS (2016) Pd–Cu alloy with hierarchical network structure as enhanced electrocatalysts for formic acid oxidation. Int J Hydrog Energy 41(16):6773–6780

    Article  CAS  Google Scholar 

  51. Sirijaraensre J, Limtrakul J (2016) Hydrogenation of CO2 to formic acid over a Cu-embedded graphene: a DFT study. Appl Surf Sci 364:241–248

    Article  CAS  Google Scholar 

  52. Homlamai K, Maihom T, Choomwattana S, Sawangphruk M, Limtrakul J (2020) Single-atoms supported (Fe Co, Ni, Cu) on graphitic carbon nitride for CO2 adsorption and hydrogenation to formic acid: first-principles insights. Appl Surf Sci 499:143928

    Article  CAS  Google Scholar 

  53. Wu HC, Chen TC, Wu JH, Pao CW, Chen CS (2021) Influence of sodium-modified Ni/SiO2 catalysts on the tunable selectivity of CO2 hydrogenation: effect of the CH4 selectivity, reaction pathway and mechanism on the catalytic reaction. J Colloid Interface Sci 586:514–527

    Article  CAS  PubMed  Google Scholar 

  54. He F, Li K, Xie G, Wang Y, Jiao M, Tang H, Wu Z (2016) Understanding the enhanced catalytic activity of Cu1@ Pd3 (111) in formic acid dissociation, a theoretical perspective. J Power Sources 316:8–16

    Article  CAS  Google Scholar 

  55. Rafiee M, Bashiri H (2020) Catalytic decomposition of formic acid on Cu (100): optimization and dynamic Monte Carlo simulation. Catal Commun 137:105942

    Article  CAS  Google Scholar 

  56. Jiang Z, Ye N, Fang T (2020) Theoretical investigation on the effect of doped Pd on the Cu (1 1 1) surface for formic acid oxidation: competing formation of CO2 and CO. Chem Phys Lett 751:137509

    Article  CAS  Google Scholar 

  57. Meng F, Yang M, Li Z, Zhang R (2020) HCOOH dissociation over the Pd-decorated Cu bimetallic catalyst: the role of the Pd ensemble in determining the selectivity and activity. Appl Surf Sci 511:145554

    Article  CAS  Google Scholar 

  58. Yoo JS, Abild-Pedersen F, Nørskov JK, Studt F (2014) Theoretical analysis of transition-metal catalysts for formic acid decomposition. ACS Catal 4(4):1226–1233

    Article  CAS  Google Scholar 

  59. Herron JA, Scaranto J, Ferrin P, Li S, Mavrikakis M (2014) Trends in formic acid decomposition on model transition metal surfaces: a density functional theory study. ACS Catal 4(12):4434–4445

    Article  CAS  Google Scholar 

  60. Jiang Z, Qin P, Fang T (2017) Decomposition mechanism of formic acid on Cu (111) surface: a theoretical study. Appl Surf Sci 396:857–864

    Article  CAS  Google Scholar 

  61. Luo Q, Wang T, Beller M, Jiao H (2013) Hydrogen generation from formic acid decomposition on Ni (2 1 1), Pd (2 1 1) and Pt (2 1 1). J Mol Catal A Chem 379:169–177

    Article  CAS  Google Scholar 

  62. Li X, Xuan K, Zhu Y, Chen G, Yang G (2018) A mechanistic study on the decomposition of a model bio-oil compound for hydrogen production over a stepped Ni surface: formic acid. Appl Surf Sci 452:87–95

    Article  CAS  Google Scholar 

  63. Bing Q, Liu W, Yi W, Liu JY (2019) Ni anchored C2N monolayers as low-cost and efficient catalysts for hydrogen production from formic acid. J Power Sources 413:399–407

    Article  CAS  Google Scholar 

  64. Luo Q, Feng G, Beller M, Jiao H (2012) Formic acid dehydrogenation on Ni (111) and comparison with Pd (111) and Pt (111). J Phys Chem C 116(6):4149–4156

    Article  CAS  Google Scholar 

  65. Peng G, Sibener SJ, Schatz GC, Ceyer ST, Mavrikakis M (2012) CO2 hydrogenation to formic acid on Ni (111). J Phys Chem C 116:3001–3006

    Article  CAS  Google Scholar 

  66. Yao Y, Zaera F (2016) Adsorption and thermal chemistry of formic acid on clean and oxygen-predosed Cu (110) single-crystal surfaces revisited. Surf Sci 646:37–44

    Article  CAS  Google Scholar 

  67. Putra SEM, Muttaqien F, Hamamoto Y, Inagaki K, Hamada I, Morikawa Y (2019) Van der Waals density functional study of formic acid adsorption and decomposition on Cu (111). J Chem Phys 150(15):154707

    Article  PubMed  CAS  Google Scholar 

  68. Li G, Guo W, Zhou X, Yu X, Zhu J (2020) Formic acid adsorption and decomposition on clean and atomic oxygen pre-covered Cu (100) surfaces. J Chem Phys 152(11):114703

    Article  CAS  PubMed  Google Scholar 

  69. Marcinkowski MD, Liu J, Murphy CJ, Liriano ML, Wasio NA, Lucci FR, Flytzani-Stephanopoulos M, Sykes ECH (2017) Selective formic acid dehydrogenation on Pt-Cu single-atom alloys. ACS Catal 7(1):413–420

    Article  CAS  Google Scholar 

  70. Varkolu M, Raju Burri D, Rao Kamaraju SR, Jonnalagadda SB, van Zyl WE (2017) Hydrogenation of levulinic acid using formic acid as a hydrogen source over Ni/SiO2 catalysts. Chem Chem Eng Technol 40(4):719–726

    Article  CAS  Google Scholar 

  71. Kim Y, Kim J, Kim DH (2018) Investigation on the enhanced catalytic activity of a Ni-promoted Pd/C catalyst for formic acid dehydrogenation: effects of preparation methods and Ni/Pd ratios. RSC Adv 8(5):2441–2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Lu YH, Zhou M, Zhang C, Feng YP (2009) Metal-embedded graphene: a possible catalyst with high activity. J Phys Chem C 113(47):20156–20160

    Article  CAS  Google Scholar 

  73. Raoof JB, Ojani R, Karimi-Maleh H, Hajmohamadi MR, Biparva P (2011) Multi-wall carbon nanotubes as a sensor and ferrocene dicarboxylic acid as a mediator for voltammetric determination of glutathione in hemolysed erythrocyte. Anal Methods-UK 3(11):2637–2643. https://doi.org/10.1039/c1ay05031a

    Article  CAS  Google Scholar 

  74. Karimi-Maleh H, Bananezhad A, Ganjali MR, Norouzi P, Sadrnia A (2018) Surface amplification of pencil graphite electrode with polypyrrole and reduced graphene oxide for fabrication of a guanine/adenine DNA based electrochemical biosensors for determination of didanosine anticancer drug. Appl Surf Sci 441:55–60. https://doi.org/10.1016/j.apsusc.2018.01.237

    Article  CAS  Google Scholar 

  75. Akça A (2021) Conversion of methane to methanol on C-doped boron nitride: a DFT study. Comput Theor Chem 1202:113291

    Article  CAS  Google Scholar 

  76. Karimi-Maleh H, Sanati AL, Gupta VK, Yoosefian M, Asif M, Bahari A (2014) A voltammetric biosensor based on ionic liquid/NiO nanoparticle modified carbon paste electrode for the determination of nicotinamide adenine dinucleotide (NADH). Sens Actuat B-Chem 204:647–654. https://doi.org/10.1016/j.snb.2014.08.037

    Article  CAS  Google Scholar 

  77. Akça A, Karaman O, Karaman C (2021) Mechanistic insights into catalytic reduction of N2O by CO over Cu-embedded graphene: a density functional theory perspective. ECS J Solıd State Sci 10(4):041003

    Google Scholar 

  78. Wang A, Li J, Zhang T (2018) Heterogeneous single-atom catalysis. Nat Rev Chem 2(6):65–81

    Article  CAS  Google Scholar 

  79. Yang XF, Wang A, Qiao B, Li J, Liu J, Zhang T (2013) Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc Chem Res 46(8):1740–1748

    Article  CAS  PubMed  Google Scholar 

  80. Esrafili MD, Dinparast L (2017) A DFT study on the catalytic hydrogenation of CO2 to formic acid over Ti-doped graphene nanoflake. Chem Phys Lett 682:49–54

    Article  CAS  Google Scholar 

  81. Yan G, Gao Z, Zhao M, Yang W, Ding X (2020) CO2 hydrogenation to formic acid over platinum cluster doped defective graphene: A DFT study. Appl Surf Sci 517:146200

    Article  CAS  Google Scholar 

  82. Zhu K, Chen C, Lu S, Zhang X, Alsaedi A, Hayat T (2019) MOFs-induced encapsulation of ultrafine Ni nanoparticles into 3D N-doped graphene-CNT frameworks as a recyclable catalyst for Cr (VI) reduction with formic acid. Carbon 148:52–63

    Article  CAS  Google Scholar 

  83. Esrafili MD, Sharifi F, Dinparast L (2017) Catalytic hydrogenation of CO2 over Pt-and Ni-doped graphene: a comparative DFT study. J Mol Graph 77:143–152

    Article  CAS  Google Scholar 

  84. Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C et al (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Condens Matter Phys 21(39):395502

    Article  Google Scholar 

  85. Giannozzi P, Andreussi O, Brumme T, Bunau O, Nardelli MB, Calandra M et al (2017) Advanced capabilities for materials modelling with Quantum ESPRESSO. J Condens Matter Phys 29(46):465901

    Article  CAS  Google Scholar 

  86. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phys Rev B 59(3):1758

    Article  CAS  Google Scholar 

  87. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188

    Article  Google Scholar 

  88. Grimme S (2011) Density functional theory with London dispersion corrections. Wiley Interdiscip Rev Comput Mol Sci 1(2):211–228

    Article  CAS  Google Scholar 

  89. Karimi-Maleh H, Orooji Y, Karimi F, Alizadeh M, Baghayeri M, Rouhi J, Tajik S, Beitollahi HD, Agarwal S, Gupta VK, Rajendran S, Ayati A, Fu L, Sanati AL, Tanhaei B, Sen F, Shabani-nooshabadi M, Asrami PN, Al-Othman A (2021) A critical review on the use of potentiometric based biosensors for biomarkers detection. Biosens Bioelectron. https://doi.org/10.1016/j.bios.2021.113252

    Article  PubMed  Google Scholar 

  90. Santos EJ, Ayuela A, Sánchez-Portal D (2010) First-principles study of substitutional metal impurities in graphene: structural, electronic and magnetic properties. New J Phys 12(5):053012

    Article  CAS  Google Scholar 

  91. Lide DR (ed) (2004) CRC handbook of chemistry and physics, vol 85. CRC Press, Boca Raton

    Google Scholar 

Download references

Acknowledgements

The numerical calculations reported in this paper were fully performed at TUBITAK ULAKBIM, High Performance and Grid Computing Center (TRUBA resources).

Author information

Authors and Affiliations

Authors

Contributions

All the authors actively participated in the literature analysis, the interpretation of results and the preparation of the manuscript. All authors read and approved the final manuscript. On the behalf of the all authors.

Corresponding authors

Correspondence to Aykan Akça or Onur Karaman.

Ethics declarations

Conflict of interest

The authors declare no confict of interest.

Ethical Approval

This study does not require an ethics committee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 685 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akça, A., Karaman, O. Electrocatalytic Decomposition of Formic Acid Catalyzed by M-Embedded Graphene (M = Ni and Cu): A DFT Study. Top Catal 65, 1–13 (2022). https://doi.org/10.1007/s11244-021-01499-w

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-021-01499-w

Keywords

Navigation