Skip to main content
Log in

First principles investigations of structural and optoelectronic properties of cubic MgxZn1−xSeyTe1−y quaternary semiconductor alloys using FP-LAPW approach

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Structural and optoelectronic properties of technologically important MgxZn1−xSeyTe1−y quaternary alloys are calculated employing DFT-based FP-LAPW approach. Computations of exchange–correlation potentials are performed with PBE-GGA for structural properties and both the mBJ and EV-GGA for optoelectronic properties. Each specimen within MgxZn1−xSeyTe1−y system is a direct band gap (Γ–Γ) semiconductor. At each cationic (Mg) concentration x, lattice constant decreases, while bulk modulus and band gap increase nonlinearly with increase in anionic (Se) concentration y. Again, nonlinear increase in lattice constant and band gap, while decrease in bulk modulus is observed with increase in cationic concentration x at each anionic concentrations y. Calculated band gap bowing for few ternary alloy systems are in good agreement with corresponding experimental data. The calculated contour maps for lattice constants and energy band gaps would be very useful for designing new quaternary alloys with desired optoelectronic properties. Optical properties of the said specimens within MgxZn1−xSeyTe1−y quaternary system show several interesting features. Composition dependence of each calculated zero-frequency limit shows opposite trend, while each calculated critical point shows similar trend of composition dependence of band gap. Finally, suitability of ZnTe and InAs as substrates for the growth of several zinc-blende MgxZn1−xSeyTe1−yquaternary alloys has been investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. D. Long, J.L. Schmit, Semiconductors and Semimetals (Academic Press, New York, 1970)

    Google Scholar 

  2. C. Chauvet, V. Bousquet, E. Tournie, J.P. Faurie, J. Electronic Mater. 28, 662 (1999)

    ADS  Google Scholar 

  3. S. Adachi, Properties of Group-IV, III–V and II–VI Semiconductors (John Wiley, New York, 2005)

    Google Scholar 

  4. J. Wang, M. Isshiki, Wide-Band-gap II–VI Semiconductors: Growth and properties Springer Handbook of Electronic and Photonic Materials (Springer, Berlin, 2006)

    Google Scholar 

  5. C.G. Van de Walle, Wide-Band-Gap Semiconductors (North Holland, Amsterdam, 1993)

    Google Scholar 

  6. V. Tomashyk, P. Feychuk, L. Shcherbak, Ternary Alloys Based on II–VI Semiconductor Compounds (CRC Press, New York, 2014)

    Google Scholar 

  7. V. Tomashyk, Quaternary Alloys Based on II–VI Semiconductor Compounds (CRC Press, New York, 2015)

    Google Scholar 

  8. S. Adachi, Properties of Semiconductor Alloys (Wiley, UK, 2009)

    Google Scholar 

  9. M.A. Hasse, J. Qui, J.M. De Puydt, H. Cheng, Appl. Phys. Lett. 59, 1272–1274 (1991)

    ADS  Google Scholar 

  10. H.P. Wagner, S. Wittmann, H. Schmitzer, H. Stanzl, J. Appl. Phys. 77, 3637–3640 (1995)

    ADS  Google Scholar 

  11. M.C. Tamargo, M.J.S.P. Brasil, R.E. Nahory, R.J. Martin, A.L. Weaver, H.L. Gilchrist, Semicond. Sci. Technol. 6, A8–A13 (1991)

    ADS  Google Scholar 

  12. M.W. Wang, J.F. Swenberg, M.C. Phillips, E.T. Yu, J.O. McCaldin, Appl. Phys. Letts. 64, 3455–3457 (1994)

    ADS  Google Scholar 

  13. R.J. Nelmes, M.I. McMohan, Semicond. Semimetals 54, 145–246 (1998)

    Google Scholar 

  14. R.G. Greene, H. Luo, A.L. Ruoff, J. Phys. Chem. Solids 56, 521–524 (1995)

    ADS  Google Scholar 

  15. S. Ves, Band Gaps and Phase Transitions in Cubic ZnS, ZnSe and ZnTe. In: H. D. Hochheimer, R. D. Etters (eds) Frontiers of High-Pressure Research. NATO ASI Series (Series B: Physics), vol 286. (Springer, Boston, 1991).

  16. A. San-Miguel, A. Polian, M. Gauthier, J.P. Itie, Phys. Rev. B 48, 8683–8693 (1993)

    ADS  Google Scholar 

  17. A.L. Ruoff, T. Li, A.C. Ho, M.F. Pai, H. Luo, R.G. Greene, C. Narayana, J.C. Molstad, S.S. Trail, F.J. Disalvo, P.E. Van Camp, Phys. Rev. Letts. 81, 2723–2726 (1998)

    ADS  Google Scholar 

  18. T. Li, H. Luo, R.G. Greene, A.L. Ruoff, S.S. Trail, F.J. DiSalvo Jr., Phys. Rev. Letts. 74, 5232–5235 (1995)

    ADS  Google Scholar 

  19. H. Okuyama, K. Nakano, T. Miyajima, K. Akimoto, J. Cryst. Growth 117, 139–143 (1992)

    ADS  Google Scholar 

  20. O. Medelung (ed.), Landolt Bornstein: Numerical Data and Functional Relationship in Science and Technology, vol. 17b (Springer, Berlin, 1982)

    Google Scholar 

  21. NKh Abrikosov, V.B. Bankina, L.V. Poretskaya, L.E. Shelimova, E.V. Skudnova, Semiconducting II-VI(IVVI and V- VI Compounds (Plenum, New York, 1969)

    Google Scholar 

  22. W.H. Strehlow, E.L. Cook, J. Phys. Chem. Ref. Data 2, 163–199 (1973)

    ADS  Google Scholar 

  23. W.A. Harrison, Electronic Structure and the Properties of Solids (Freeman, San-Francisco, 1980)

    Google Scholar 

  24. H. Okuyama, K. Nakano, T. Miyajima, K. Akimoto, Japanese. J. Appl. Phys. 30, L1620–L1623 (1991)

    ADS  Google Scholar 

  25. A. Manabe, A. Mitsuishi, H. Yoshinaga, Jpn. J. Appl. Phys. 6, 593–600 (1967)

    ADS  Google Scholar 

  26. D.T.F. Marple, J. Appl. Phys. 35, 539–542 (1964)

    ADS  Google Scholar 

  27. B.H. Lee, J. Appl. Phys. 41, 2988–2990 (1970)

    ADS  Google Scholar 

  28. D. Berlincourt, H. Jaffe, L.R. Shiozawa, Phys. Rev. 29, 1009–1017 (1963)

    ADS  Google Scholar 

  29. B. Jobst, D. Hommel, U. Lunz, T. Gerhard, G. Landwehr, Appl. Phys. Letts. 69, 97–99 (1996)

    ADS  Google Scholar 

  30. K. Watanabe, MTh Litz, M. Korn, W. Ossau, A. Waag, G. Landwehr, U. Schussler, J. Appl. Phys. 81, 451–455 (1997)

    ADS  Google Scholar 

  31. T. Asano, K. Funato, F. Nakamura, A. Ishibashi, J. Cryst. Growth 156, 373–376 (1995)

    ADS  Google Scholar 

  32. MTh Litz, K. Watanabe, M. Korn, H. Ress, U. Lunz, W. Ossau, A. Waag, G. Landwehr, Th Walter, B. Neubauer, D. Gerthsen, U. Schussler, J. Cryst. Growth 159, 54–57 (1996)

    ADS  Google Scholar 

  33. A.U. Ubale, Y.S. Sakhare, S.G. Ibrahim, M.R. Belkhedkar, Solid State Sci. 23, 96–101 (2013)

    ADS  Google Scholar 

  34. A.U. Ubale, Y.S. Sakhare, Materi. Sci. Semicond. Process. 16, 1769–1774 (2013)

    Google Scholar 

  35. R. Dahmani, L. Salamanca-Riba, N.V. Nguyen, D. Chandler-Horowitz, B.T. Jonker, J. Appl. Phys. 76, 514–517 (1994)

    ADS  Google Scholar 

  36. Y.D. Kim, S.L. Cooper, M.V. Klein, Appl. Phys. Lett. 62, 2387–2389 (1993)

    ADS  Google Scholar 

  37. J.S. Kim, S.H. Suh, C.H. Kim, S.J. Chung, J. Appl. Phys. 81, 6107–6111 (1997)

    ADS  Google Scholar 

  38. A. Waag, H. Heinke, S. Scholl, C.R. Becker, G. Landwehr, J. Cryst. Growth 131, 607–611 (1993)

    ADS  Google Scholar 

  39. R.C. Tu, Y.K. Su, C.F. Li, Y.S. Huang, S.T. Chou, W.H. Lan, S.L. Tu, H. Chang, J. Appl. Phys. 83, 1664–1669 (1998)

    ADS  Google Scholar 

  40. C.H. Hsu, C.Y. Yan, W.H. Kao, Y.T. Yu, H.H. Tung, Ferroelectrics 491, 118–126 (2016)

    Google Scholar 

  41. J. Camacho, A. Cantarero, I. Hernández-Calderon, L. Gonzalez, J. Appl. Phys. 92, 6014–6018 (2002)

    ADS  Google Scholar 

  42. Y. Yang, Y. Hu, C. Liu, W. Li, J. Zhang, L. Wu, J. Yang, Chalcogenide Lett. 13, 521–528 (2016)

    Google Scholar 

  43. E. M. Larramendi, K. Gutierrez Z-B, C. Arens, U. Woggon, D. Schikora, K. Lischka, J. Appl. Phys. 107, 103510–103514 (2010)

  44. F. Xu, B. Xue, F. Wang, A. Dong, Chem. Mater. 27, 1140–1146 (2015)

    Google Scholar 

  45. H. Lee, In-Young. Kim, J. Powell, D. E. Aspnes, S. Lee, F. Peiris, J. K. Furdyna, J. Appl. Phys. 88, 878–882 (2000)

  46. F. Firszt, S. Lęgowski, H. Męczynska, H.L. Oczkowski, W. Osinska, J. Szatkowski, W. Paszkowicz, Z.M. Spolnik, J. Cryst. Growth 159, 167–170 (1996)

    ADS  Google Scholar 

  47. K.J. Kim, M.H. Lee, J.H. Bahng, C.Y. Kwak, E. Oh, Solid State Commun. 105, 17–20 (1998)

    ADS  Google Scholar 

  48. X. Liu, U. Bindley, Y. Sasaki, J.K. Furdyna, J. Appl. Phys. 91, 2859–2865 (2002)

    ADS  Google Scholar 

  49. K. Naniwae, H. Iwata, K. Yashiki, Appl. Phys. Letts. 74, 3984–3986 (1999)

    ADS  Google Scholar 

  50. J.H. Chang, H.M. Wang, M.W. Cho, H. Makino, H. Hanada, T. Yao, K. Shim, H. Rabitz, J. Vacuum Sci. Techn. B 18, 1530–1533 (2000)

    ADS  Google Scholar 

  51. S.H. Wei, A. Zunger. Phys. Rev. B 37, 8958–8981 (1988)

    ADS  Google Scholar 

  52. O. Zakharov, A. Rubio, X. Blase, M.L. Cohen, S.G. Louie, Phys. Rev. B 50, 10780–10787 (1994)

    ADS  Google Scholar 

  53. A.E. Merad, M.B. Kanoun, J. Cibert, H. Aourag, G. Merad, Phys. Lett. A 315, 143–149 (2003)

    ADS  Google Scholar 

  54. X.J. Chen, A. Mintz, J.S. Hu, X.L. Hua, J. Zinck, W.A. Goddard-III, J. Vac. Sci. Technol. B 13, 1715–1727 (1995)

    Google Scholar 

  55. N.E. Christensen, O.B. Christensen, Phys. Rev. B 33, 4739–4746 (1986)

    ADS  Google Scholar 

  56. G.D. Lee, M.H. Lee, J. Ihm, Phys. Rev. B 52, 1459–1462 (1995)

    ADS  Google Scholar 

  57. R.A. Casali, N.E. Christensen, Solid State Commun. 108, 793–798 (1998)

    ADS  Google Scholar 

  58. R. Gangadharan, V. Jayalakshmi, J. Kalaiselvi, S. Mohan, R. Murugan, B. Palanivel, J. Alloy. Compd. 359, 22–26 (2003)

    Google Scholar 

  59. R. Khenata, A. Bouhemadou, M. Sahnoun, A.H. Reshak, H. Baltache, M. Rabah, Comput. Mater. Sci. 38, 29–38 (2006)

    Google Scholar 

  60. M. Bilal, M. Shafiq, I. Ahmad, I. Khan, J. Semicond. 35, 072001–072009 (2014)

    ADS  Google Scholar 

  61. F. Kootstra, P.L. de Boeij, J.G. Snijders, Phys. Rev. B 62, 7071–7083 (2000)

    ADS  Google Scholar 

  62. H.Y. Wang, J. Cao, X.Y. Huang, J.M. Huang, Condensed Matter Phys. 15, 13705–13714 (2012)

    Google Scholar 

  63. J. Heyd, J.E. Peralta, G.E. Scuseria, J. Chem. Phys. 123, 174101–174107 (2005)

    ADS  Google Scholar 

  64. P.E. Van Camp, V.E.V. Doren, J.L. Martins, Phys. Rev. B 55, 775–779 (1997)

    ADS  Google Scholar 

  65. F. Drief, A. Tadjer, D. Mesri, H. Aourag, Catal. Today 89, 343–355 (2004)

    Google Scholar 

  66. S. Duman, S. Bagci, H.M. Tutuncu, G.P. Srivastava, Phys. Rev. B 73, 205201–205214 (2006)

    ADS  Google Scholar 

  67. G. Gokoglu, M. Durandurdu, O. Gulseren, Comp. Mater. Sci. 47, 593–598 (2009)

    Google Scholar 

  68. D. Rached, N. Benkhettou, B. Soudini, B. Abbar, N. Sekkal, M. Driz, Phys. Status Solidi B 240, 565–573 (2003)

    ADS  Google Scholar 

  69. G. Kalpana, B. Palanivel, R.M. Thomas, M. Rajagopalan, Phys. B 222, 223–228 (1996)

    ADS  Google Scholar 

  70. S. G, Lee, K. J. Chang, Phys. Rev. B 52, 1918–1925 (1995)

    ADS  Google Scholar 

  71. L. Tairi, S. Touam, A. Boumaza, M. Boukhtouta, H. Meradji, S. Ghemid, S. Bin Omran, F. El Haj Hassan, R. Khenata, Phase Trans., 90, 929–941 (2017)

  72. A. Fleszar, W. Hanke, Phys. Rev. B 71, 045207–045211 (2005)

    ADS  Google Scholar 

  73. J.E. Bernard, A. Zunger, Phys. Rev. B 34, 5992–5996 (1986)

    ADS  Google Scholar 

  74. F. El Haj Hassan, B. Amrani, F. Bahsoun, Phys. B 391, 363–370 (2007)

  75. Y. Zhu, S.H. Zhang, X.Y. Zhang, A.M. Hao, S.L. Zhang, F. Yang, J.K. Yang, R.P. Liu, Comput. Mater. Sci. 50, 2745–2749 (2011)

    Google Scholar 

  76. F. El Haj Hassan, B. Amrani, J. Phys. Cond. Matter 19, 386234–386242 (2007)

  77. A. Sajid, A. Afaq, G. Murtaza, Chin. J. Phys. 51, 316–326 (2013)

    Google Scholar 

  78. Z. Charifi, H. Baaziz, N. Bouarissa, Mater. Chem. Phys. 84, 273–278 (2004)

    Google Scholar 

  79. Z. Charifi, F. El Haj Hassan, H. Baaziz, Sh. Khosravizadeh, S. J. Hashemifar, H. Akbarzadeh, J. Phys. Cond. Matter 17, 7077–7088 (2005)

  80. N. Ullah, G. Murtaza, R. Khenata, J. Rehman, H. UdDin, S. Bin Omran, Mater. Sci. Semicond. Proce. 26, 681–689 (2014)

  81. I. Khan, F. Subhan, I. Ahmad, Z. Ali, J. Phys. Chem. Solids 83, 75–84 (2015)

    ADS  Google Scholar 

  82. G. Murtaza, N. Ullah, A. Rauf, R. Khenata, S. Bin Omran, M. Sajjad, A. Waheed, Mater. Sci. Semicond. Process. 30, 462–468 (2015)

  83. N.A. Noor, A. Shaukat, Int. J. Mod. Phys. B 26, 1250168–1250187 (2012)

    ADS  Google Scholar 

  84. K. Shim, H. Rabitz, J.H. Chang, T. Yao, J. Crystal Growth 214(215), 350–354 (2000)

    ADS  Google Scholar 

  85. F. El Haj Hassan, S. J. Hashemifar, H. Akbarzadeh, Phys. Rev. B 73, 195202–195207 (2006)

  86. P. Hohenberg, W. Kohn, Phys. Rev. B 136, 864–871 (1964)

    ADS  Google Scholar 

  87. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133–A1138 (1965)

    ADS  Google Scholar 

  88. O.K. Andersen, Phys. Rev. B 42, 3063–3083 (1975)

    Google Scholar 

  89. P. Blaha, K. Schwarz, P. Sorantin, S.K. Trickey, Comput. Phys. Commun. 59, 339–415 (1990)

    Google Scholar 

  90. P. Blaha, K. Schwarz, G. H. Madsen, D. Kbasnicka, J. Luitz, in: K. Schwarz (Ed.) FP-LAPW+lo Program for Calculating Crystal Properties, (Techn. WIEN2K, Austria, 2001).

  91. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Letts. 77, 3865–3868 (1996)

    ADS  Google Scholar 

  92. A.D. Becke, E.R. Johnson, J. Chem. Phys. 124, 221101–221104 (2006)

    ADS  Google Scholar 

  93. F. Tran, P. Blaha, Phys. Rev. Letts. 102, 226401–226404 (2009)

    ADS  Google Scholar 

  94. E. Engel, S.H. Vosko, Phys. Rev. B 47, 13164–13174 (1993)

    ADS  Google Scholar 

  95. A. Kokalj, Comp. Mat. Sci. 28, 155–168 (2003) (Code available from https://www.xcrysden.org/)

  96. K. Hacini, H. Meradji, S. Ghemid, F. El Haj Hassan, Chin. Phys. B 21, 036102–036108 (2012)

  97. F.D. Murnaghan, Proc. Natl. Acad. Sci. USA 30, 244–247 (1944)

    ADS  Google Scholar 

  98. L. Vegard, Z. Phys. 5, 17–26 (1921)

    ADS  Google Scholar 

  99. J.P. Dismukes, L. Ekstrom, R.J. Paff, J. Phys. Chem. 68, 3021–3027 (1964)

    Google Scholar 

  100. M. Fox, Optical Properties of Solids (Oxford University Press, UK, 2001)

    Google Scholar 

  101. C. Sifi, H. Meradrji, M. Silmani, S. Labidi, S. Ghemid, E. B. Hanneche, F. El Haj Hassan, J. Phys.: Cond. Mat. 21, 195401 (2009).

  102. M. Dadsetani, A. Pourghazi, Phys. Rev. B 73, 195102–195108 (2006)

    ADS  Google Scholar 

  103. D.R. Penn, Phys. Rev. 128, 2093–2097 (1962)

    ADS  Google Scholar 

  104. H. Okuyama, Y. Kishita, A. Ishibashi, Phys. Rev. B 57, 2257–2263 (1998)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surya Chattopadhyaya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 47253 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, D., Chanda, S., Debnath, B. et al. First principles investigations of structural and optoelectronic properties of cubic MgxZn1−xSeyTe1−y quaternary semiconductor alloys using FP-LAPW approach. Appl. Phys. A 125, 644 (2019). https://doi.org/10.1007/s00339-019-2938-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2938-5

Navigation