Skip to main content
Log in

Dielectric constant and electrical study of solid-state electrolyte lithium phosphate glasses

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

A detailed analysis of dielectric response and electrical properties of lithium phosphate glasses (LiPO3) as a function of temperature from 20 °C (room temperature) to 170 °C and frequency from 4 Hz to 4 MHz was done using impedance spectroscopy technique. X-ray diffraction (XRD) and differential scanning calorimetry were used to study the structure phase and thermal analysis of the material under investigation, respectively. XRD pattern confirms the amorphous nature of the material. The total conductivity shows two distinct regions, dc conductivity and ac conductivity (σtot(ω) = σdc + A ωr). The ac conductivity’s exponent factor r was found invariant at low-temperature zone and temperature dependent at high-temperature zone. The frequency exponent factor values and its temperature dependence suggested that the jump relaxation model is the best model that can describe the conduction mechanism. Various parameters such as bulk conductivity, dc conductivity, dielectric relaxation time, transition time and the associated activation energies were calculated and discussed. The activation energy of bulk conductivity, dc conductivity and the dielectric relaxation was found to have similar value (0.29 eV). Thermodynamic parameters, such as free energy of activation (ΔF), enthalpy of activation (ΔH) and entropy of activation (ΔS), have been calculated and discussed as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. R. Vergaz, D. Barrios, J.M. Sánchez-Pena, C. Pozo-Gonzalo, M. Salsamendi, J.A. Pomposo, Impedance analysis and equivalent circuit of an all-plastic viologen based electrochromic device. Displays 29, 401–407 (2008). https://doi.org/10.1016/j.displa.2007.12.005

    Article  Google Scholar 

  2. H.L. Tuller, M.W. Barsoum, Glass solid electrolytes: past, present and near future—the year 2004. J. Non Cryst. Solids 73, 331–350 (1985). https://doi.org/10.1016/0022-3093(85)90358-8

    Article  ADS  Google Scholar 

  3. L. Bih, H. Bih, M. Amalhay, H. Mossadik, A. Elbouari, B. Belhorma, M.P.F. Graça, M.A. Valente, Phosphate glass-glasses as new energy density dielectric materials. Procedia Eng. 83, 371–377 (2014).https://doi.org/10.1016/j.proeng.2014.09.030

    Article  Google Scholar 

  4. I. Jlassi, N. Sdiri, H. Elhouichet, M. Ferid, Raman and impedance spectroscopy methods of P2O5–Li2O–Al2O3 glass system doped with MgO. J. Alloys Compd. 645, 125–130 (2015). https://doi.org/10.1016/j.jallcom.2015.05.025

    Article  Google Scholar 

  5. E.A. Abou Neel, V. Salih, J.C. Knowles, 1.18 Phosphate-based glasses. Compr. Biomater. II, 1(1), 392–405 (2017). https://doi.org/10.1016/b978-0-08-100691-7.00253-6

    Article  Google Scholar 

  6. A.R. Boccaccini, J.E. Gough, Tissue engineering using ceramics and polymers (Woodhead Publishing Limited, 2007). https://doi.org/10.1533/9781845693817

    Book  Google Scholar 

  7. E.A. Abou Neel, J.C. Knowles, Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J. Mater. Sci. Mater. Med. 19, 377–386 (2008). https://doi.org/10.1007/s10856-007-3079-5

    Google Scholar 

  8. P. Knauth, Inorganic solid Li ion conductors: An overview. Solid State Ionics 180, 911–916 (2009). https://doi.org/10.1016/j.ssi.2009.03.022

    Article  Google Scholar 

  9. B.L. Ellis, W.R.M. Makahnouk, Y. Makimura, K. Toghill, L.F. Nazar, A multifunctional 3.5V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 6,749–753 (2007). https://doi.org/10.1038/nmat2007

    Article  ADS  Google Scholar 

  10. M.H. Braga, J.A. Ferreira, V. Stockhausen, J.E. Oliveira, A. El-Azab, Novel Li3ClO based glasses with superionic properties for lithium batteries. J. Mater. Chem. A. 2, 5470–5480 (2014). https://doi.org/10.1039/c3ta15087a

    Article  Google Scholar 

  11. A. Hayashi, R. Komiya, M. Tatsumisago, T. Minami, Characterization of Li2S-SiS2-Li3MO3 (M=B, Al, Ga and In) oxysulfide glasses and their application to solid state lithium secondary batteries, in: Solid State Ionics, 2002: pp. 285–290. https://doi.org/10.1016/S0167-2738(02)00313-2.

    Article  Google Scholar 

  12. E. Kartini, T.Y.S. Panca Putra, I. Kuntoro, T. Sakuma, K. Basar, O. Kamishima, J. Kawamura, Recent studies on lithium solid electrolytes (LiI)x (LiPO 3 )1- x for secondary battery. J. Phys. Soc. Jpn. 79, 54–58 (2010). https://doi.org/10.1143/JPSJS.79SA.54

    Article  Google Scholar 

  13. L. Bih, Electronic and ionic conductivity of glasses inside the Li2O–MoO3–P2O5 system. Solid State Ionics 132, 71–85 (2000). https://doi.org/10.1016/S0167-2738(00)00697-4

    Article  Google Scholar 

  14. Y.K. Startsev, A.A. Pronkin, I.A. Sokolov, I.V. Murin, Nature of current carriers and electric properties of glasses in xAg2O · (0.2 − x)Tl2O · 0.8B2O3 system. Glass Phys. Chem. 39, 32–44 (2013). https://doi.org/10.1134/S1087659613010124

    Article  Google Scholar 

  15. K. Senevirathne, C.S. Day, M.D. Gross, A. Lachgar, N.A.W. Holzwarth, Y.K. Startsev, A.A.A. Pronkin, I.A.A. Sokolov, I.V.V. Murin, H.-D. Wiemhöfer, A.A.A. Pronkin, Electric conductivity and the nature of electric current carriers in the PbF2-2PbO · SiO2 glasses. Glass Phys. Chem. 39, 32–44 (2013). https://doi.org/10.1134/S1087659613010124

    Article  Google Scholar 

  16. K. Senevirathne, C.S. Day, M.D. Gross, A. Lachgar, N.A.W. Holzwarth, A new crystalline LiPON electrolyte: Synthesis, properties, and electronic structure. Solid State Ionics 233, 95–101 (2013). https://doi.org/10.1016/j.ssi.2012.12.013

    Article  Google Scholar 

  17. R.K. Brow, Review: the structure of simple phosphate glasses. J. Non Cryst. Solids 263–264, 1–28 (2000). https://doi.org/10.1016/S0022-3093(99)00620-1

    Article  ADS  Google Scholar 

  18. U. Hoppe, A structural model for phosphate glasses. J. Non Cryst. Solids 195, 138–147 (1996). https://doi.org/10.1016/0022-3093(95)00524-2

    Article  ADS  Google Scholar 

  19. P.K. Gupta, Non-crystalline solids: Glasses and amorphous solids. J. Non Cryst. Solids 195, 158–164 (1996). https://doi.org/10.1016/0022-3093(95)00502-1

    Article  ADS  Google Scholar 

  20. P. Hockicko, J. Kudelcik, F. Munoz, L. Munoz-Senovilla, Electrical properties of LiPO3 glasses. In: 10th Int. Conf. ELEKTRO 2014—Proc (2014), pp. 654–657. https://doi.org/10.1109/ELEKTRO.2014.6848981

  21. P. Dabas, V. Subramanian, K. Hariharan, Effect of quenching rate on the structure, ion transport, and crystallization kinetics in lithium-rich phosphate glass. J. Mater. Sci. 49(1), 134–141 (2014). https://doi.org/10.1007/s10853-013-7686-x

    Article  ADS  Google Scholar 

  22. D. Crespo, P. Bruna, A. Valles, E. Pineda, Phonon dispersion relation of metallic glasses. Phys. Rev. B. 94, 144205 (2016). https://doi.org/10.1103/PhysRevB.94.144205

    Article  ADS  Google Scholar 

  23. A.K. Jonscher, Dielectric relaxation in solids. J. Phys. D. Appl. Phys. 32 (1999). https://doi.org/10.1088/0022-3727/32/14/201

    Article  ADS  Google Scholar 

  24. R.J. Barczyński, P. Król, L. Murawski, Ac and dc conductivities in V2O5-P2O 5 glasses containing alkaline ions. J. Non Cryst. Solids 356, 37–40 (2010). https://doi.org/10.1016/j.jnoncrysol.2010.07.001

    Article  Google Scholar 

  25. S. Mahboob, G. Prasad, G.S. Kumar, Impedance and a.c. conductivity studies on Ba(Nd0.2Ti 0.6Nb0.2)O3 ceramic prepared through conventional and microwave sintering route. Bull. Mater. Sci. 29, 347–355 (2006). https://doi.org/10.1007/BF02704134

    Article  Google Scholar 

  26. A.A.A. Youssef, The permittivity and ac conductivity of the layered Perovskite [(CH3)(C6H5)3P]2Hgl4, Zeitschrift Fur Naturforsch. Sect. A J. Phys. Sci. 57, 263–269 (2002). https://doi.org/10.1515/zna-2002-0510

  27. M. Cutroni, A. Mandanici, P. Mustarelli, C. Tomasi, M. Federico, Ionic conduction and dynamical regimes in silver phosphate glasses. J. Non Cryst. Solids 307–310 (2002). https://doi.org/10.1016/S0022-3093(02)01561-2

    Article  ADS  Google Scholar 

  28. D.P. Singh, K. Shahi, K.K. Kar, Superlinear frequency dependence of AC conductivity and its scaling behavior in xAgI-(1–x) AgPO3 glass superionic conductors. Solid State Ionics 287, 89–96 (2016). https://doi.org/10.1016/j.ssi.2016.01.048

    Article  Google Scholar 

  29. A.A. Saif, P. Poopalan, Correlation between the chemical composition and the conduction mechanism of barium strontium titanate thin films. J. Alloys Compd. 509, 7210–7215 (2011). https://doi.org/10.1016/j.jallcom.2011.04.068

    Article  Google Scholar 

  30. K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22, 111–195 (1993). https://doi.org/10.1016/0079-6786(93)90002-9

    Article  Google Scholar 

  31. K.L. Ngai, H. Jain, O. Kanert, Physical origins of the ω1.0-dependent and the ωq-dependent (q ≈ 1.3) contributions to the conductivity relaxation of glassy ionic conductors. J. Non Cryst. Solids. 222, 383–390 (2004). https://doi.org/10.1016/s0022-3093(97)90140-x

    Article  ADS  Google Scholar 

  32. S.R. Elliott, A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987). https://doi.org/10.1080/00018738700101971

    Article  ADS  Google Scholar 

  33. A.R. Long, Frequency-dependent loss in amorphous semiconductors. Adv. Phys. 31, 553–637 (1982). https://doi.org/10.1080/00018738200101418

    Article  ADS  Google Scholar 

  34. K. Funke, Jump relaxation model and coupling model - a comparison. J. Non Cryst. Solids. 172–174, 1215–1221 (1994). https://doi.org/10.1016/0022-3093(94)90646-7

    Article  ADS  Google Scholar 

  35. R. Vaish, K.B.R. Varma, Dielectric properties of Li2O–3B2O3 glasses. J. Appl. Phys. 106, 064106 (2009). https://doi.org/10.1063/1.3225583

    Article  ADS  Google Scholar 

  36. D.P. Almond, G.K. Duncan, A.R. West, The determination of hopping rates and carrier concentrations in ionic conductors by a new analysis of ac conductivity. Solid State Ionics 8, 159–164 (1983). https://doi.org/10.1016/0167-2738(83)90079-6

    Article  Google Scholar 

  37. A.A. Ali, M.H. Shaaban, Electrical properties of LiBBaTe glass doped with Nd2O3. Solid State Sci. 12, 2148–2154 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.09.016

    Article  ADS  Google Scholar 

  38. F. Munoz, A. Duran, L. Pascual, L. Montagne, B. Revel, A. Rodrigues, Increased electrical conductivity of LiPON glasses produced by ammonolysis. Solid State Ionics 179, 574–579 (2008). https://doi.org/10.1016/j.ssi.2008.04.004

    Article  Google Scholar 

  39. S. Havriliak, S. Negami, A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer (Guildf). 8, 161–210 (1967). https://doi.org/10.1016/0032-3861(67)90021-3

    Article  Google Scholar 

  40. K.S. Cole, R.H. Cole, Dispersion and absorption in dielectrics I. Alternating current characteristics. J. Chem. Phys. 9, 341 (1941). https://doi.org/10.1063/1.1750906

    Article  Google Scholar 

  41. J.G. Powles, Dielectric relaxation and the internal field. J. Chem. Phys. 21, 633 (1953). https://doi.org/10.1063/1.1698980

    Article  ADS  Google Scholar 

  42. M.F. Kotkata, F.A. Abdel-Wahab, H.M. Maksoud, Investigations of the conduction mechanism and relaxation properties of semiconductor Sm doped a-Se films. J. Phys. D. Appl. Phys. 39(10)(2006). https://doi.org/10.1088/0022-3727/39/10/013

    Article  ADS  Google Scholar 

  43. N.J. Tharayil, S. Sagar, R. Raveendran, A.V. Vaidyan, Dielectric studies of nanocrystalline nickel–cobalt oxide. Phys. B Condens. Matter 399, 1–8 (2007). https://doi.org/10.1016/j.physb.2007.03.037

    Article  ADS  Google Scholar 

  44. F.E. Salman, N. Shash, H. Abou El-Haded, M.K. El-Mansy, Electrical conduction and dielectric properties of vanadium phosphate glasses doped with lithium. J. Phys. Chem. Solids. 63(11) (2002). https://doi.org/10.1016/S0022-3697(02)00164-6

    Article  ADS  Google Scholar 

  45. P.B. Macedo, C.T. Moynihan, R. Bose, Role of ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glass 13, 171–179 (1972). https://doi.org/10.4236/ns.2014.66038

    Article  Google Scholar 

  46. P. Debye, Polar molecules (Chemical Catalog Co., Inc., New York, 1929), pp. 172. https://doi.org/10.1002/jctb.5000484320[J. Soc. Chem. Ind. 48 (2007) 1036–1037]

  47. S. Glasstone, K.J. Laidler, H. Eyring, The Theory of Rate Processes: The Kinetics of I Chemical Reactions, Viscosity, Diffusion and Electrochemical Phenomena, 1st edn. (McGraw-Hill, New York, 1941), pp. 13–15. https://doi.org/10.1038/149509a0 (introduction)

    Book  Google Scholar 

  48. H. Eyring, Viscosity, plasticity, and diffusion as examples of absolute reaction rates. J. Chem. Phys. 4, 283–291 (1936). https://doi.org/10.1063/1.1749836

    Article  ADS  Google Scholar 

  49. H. A. Hashem, S. Abouelhassan, Physics, dielectric and thermodynamic properties of tin (II) sulfide thin films. Chin. J. Phys. 43, 955–966 (2005)

  50. K.K. Srivastava, A. Kumar, O.S. Panwar, K.N. Lakshminarayan, Dielectric relaxation study of chalcogenide glasses. J. Non Cryst. Solids 33, 205–224 (1979). https://doi.org/10.1016/0022-3093(79)90050-4

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalil J. Hamam.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamam, K.J., Salman, F. Dielectric constant and electrical study of solid-state electrolyte lithium phosphate glasses. Appl. Phys. A 125, 621 (2019). https://doi.org/10.1007/s00339-019-2868-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2868-2

Navigation