Skip to main content
Log in

Effect of quenching rate on the structure, ion transport, and crystallization kinetics in lithium-rich phosphate glass

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The report investigates the effect of quenching rate on the structure, lithium ion dynamics, and crystallization kinetics of mol% 60Li2O–40P2O5 glass. Quenching rate of the order of 105 K s−1 has been achieved using a twin-roller rapid quenching setup. Raman and FT-IR studies reveal that the rapidly quenched glass is more disordered with a reduced amount of pyrophosphate structural units (P2O7 4−) in the glass matrix as compared with the conventionally quenched glass. Non-isothermal differential scanning calorimetry brings out that the rapidly quenched glass undergoes three-phase crystallization while the conventionally quenched glass depicted predominantly single-phase crystallization. The phases are identified as lithium metaphosphate (LiPO3), pyrophosphate (Li4P2O7), and orthophosphate (Li3PO4). The activation energy for crystallization for the major phase Li4P2O7 calculated using thermoanalytical methods turns out to be 287 kJ mol−1. The above structural differences between the rapidly and conventionally quenched glasses result in superior conduction characteristics for the rapidly quenched glass depicting ionic conductivity of 1.0 × 10−6 S cm−1 at 343 K with an activation energy of 0.63 eV for lithium ion motion. Microstructural studies on the glass ceramics divulge surface, 2D, and 3D crystal growth mechanism for lithium meta-, pyro-, and ortho-phosphate phases, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Minami T, Hayashi A, Tatsumisago M (2006) Solid State Ion 177:2715

    Article  CAS  Google Scholar 

  2. Quartarone E, Mustarelli P (2011) Chem Soc Rev 40:2525

    Article  PubMed  CAS  Google Scholar 

  3. Pradel A, Pagnier T, Ribes M (1985) Solid State Ion 17:147

    Article  CAS  Google Scholar 

  4. Cho KI, Lee SH, Cho KH, Shin DW, Sun YK (2006) J Power Sources 163:223

    Article  CAS  Google Scholar 

  5. Money BK, Hariharan K (2009) J Phys: Condens Matter 21:115102

    ADS  Google Scholar 

  6. Dabas P, Hariharan K (2012) J Non-Cryst Solids 358:252

    Article  CAS  ADS  Google Scholar 

  7. Ravaine D, Nassau K, Glass AM (1984) Solid State Ion 13:15

    Article  CAS  Google Scholar 

  8. Zhang L, Brow RK, Schlesinger ME, Ghussn L, Zanotto ED (2010) J Non-Cryst Solids 356:1252

    Article  CAS  ADS  Google Scholar 

  9. Gupta A, Jayaraj ME (1992) J Non-Cryst Solids 149:275

    Article  CAS  ADS  Google Scholar 

  10. Tatsumisago M, Hamada A, Minami T, Tanaka M (1983) J Am Ceram Soc 66:117

    Article  CAS  Google Scholar 

  11. Tatsumisago M, Kowada Y, Minami T (1988) Phys Chem Glasses 29:63

    CAS  Google Scholar 

  12. Chen HS, Miller CE (1970) Rev Sci Instrum 41:1237

    Article  CAS  ADS  Google Scholar 

  13. Dabas P, Hariharan K (2013) Trans Indian Inst Met 66:343

    Article  CAS  Google Scholar 

  14. Efimov AM (1997) J Non-Cryst Solids 209:209

    Article  CAS  ADS  Google Scholar 

  15. Almond DP, West AR (1983) Nature 306:456

    Article  CAS  ADS  Google Scholar 

  16. Johnson WA, Mehl F (1939) Trans Am Inst Min Metall Pet Eng 139:416

    Google Scholar 

  17. Avrami M (1939) J Chem Phys 7:1103

    Article  CAS  ADS  Google Scholar 

  18. Avrami M (1940) J Chem Phys 8:212

    Article  CAS  ADS  Google Scholar 

  19. Matusita K, Sakka S (1979) Thermochim Acta 33:351

    Article  CAS  Google Scholar 

  20. Vázquez J, Wagner C, Villares P, Jiménez-Garay R (1996) Acta Mater 12:4807

    Article  Google Scholar 

  21. Donald IW (2004) J Non-Cryst Solids 345, 346:120

    Article  Google Scholar 

  22. Kemény T, Gránásy L (1984) J Non-Cryst Solids 68:193

    Article  ADS  Google Scholar 

  23. Kissinger HE (1956) J Res Natl Bur Stand 57:217

    Article  CAS  Google Scholar 

  24. Soliman AA (2004) Thermochim Acta 423:71

    Article  CAS  Google Scholar 

  25. Yoshiyagawa M, Tomozawa M (1982) J Phys 43:C9–C411

    Google Scholar 

  26. Martin SW (1991) J Am Ceram Soc 74:1767

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Hariharan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dabas, P., Subramanian, V. & Hariharan, K. Effect of quenching rate on the structure, ion transport, and crystallization kinetics in lithium-rich phosphate glass. J Mater Sci 49, 134–141 (2014). https://doi.org/10.1007/s10853-013-7686-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-013-7686-x

Keywords

Navigation