Skip to main content

Advertisement

Log in

Highly sensitive graphene platelets and multi-walled carbon nanotube-based flexible strain sensor for monitoring human joint bending

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, we report the fabrication of a high-sensitivity strain sensor fabricated using graphene platelets (GnPs) and multi-walled carbon nanotubes (MWCNTs) for monitoring joint-bending movement. The optimized ultrasonic time and the ball mill-mixing process make the GnPs disperse evenly in the MWCNTs. The strain sensor made up of the GnP/MWCNT mixture (30 wt% GnPs loading) is fabricated by a spray-method and its conductivity is up to 104 S/m. The as-prepared GnP/MWCNT sensor exhibits relatively high tensile strength of 5.4 MPa, sensing range of 7.5%, gauge factor of 181.36, linearity of 99.545%, and great bending reproducibility over 5000 cycles. These remarkable features endow our sensing devices to monitor joint bending in human health monitoring, e.g., elbow, finger and wrist bending. The results demonstrate that our flexible GnP/MWCNT sensor shows promising applications prospects in smart wearable device monitoring human health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.D. Kersey, T.A. Berkoff, W.W. Morey, Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter. Opt. Lett. 18(16), 1370–1372 (1993)

    Article  ADS  Google Scholar 

  2. X. Chen, X. Han, Q.D. Shen, PVDF-based ferroelectric polymers in modern flexible electronics. Adv. Electron. Mater. 3(5), 1600460 (2017)

    Article  Google Scholar 

  3. W. Yuan, J. Yang, K. Yang et al., High-performance and multifunctional skinlike strain sensors based on graphene/springlike mesh network. ACS Appl. Mater. Interfaces. 10(23), 19906–19913 (2018)

    Article  Google Scholar 

  4. H. Wu, Q. Liu, W. Du et al., Transparent polymeric strain sensors for monitoring vital signs and beyond. ACS Appl. Mater. Interfaces. 10(4), 3895–3901 (2018)

    Article  Google Scholar 

  5. Q. Liu, J. Chen, Y. Li et al., High-performance strain sensors with fish-scale-like graphene-sensing layers for full-range detection of human motions. ACS Nano 10(8), 7901–7906 (2016)

    Article  Google Scholar 

  6. S. Gong, D.T.H. Lai, B. Su et al., Highly stretchy black gold E-Skin nanopatches as highly sensitive wearable biomedical sensors. Adv. Electron. Mater. 1(4), 1400063 (2015)

    Article  Google Scholar 

  7. A.A. Barlian, W.T. Park, J.R. Mallon et al., Semiconductor piezoresistance for microsystems. Proc. IEEE 97(3), 513–552 (2009)

    Article  Google Scholar 

  8. Y. Wang, L. Wang, T. Yang et al., Wearable and highly sensitive graphene strain sensors for human motion monitoring. Adv. Funct. Mater. 24(29), 4666–4670 (2014)

    Article  MathSciNet  Google Scholar 

  9. Y. Wang, R. Yang, Z. Shi et al., Super-elastic graphene ripples for flexible strain sensors. ACS Nano 5(5), 3645–3650 (2011)

    Article  Google Scholar 

  10. C. Cochrane, V. Koncar, M. Lewandowski et al., Design and development of a flexible strain sensor for textile structures based on a conductive polymer composite. Sensors 7(4), 473–492 (2007)

    Article  Google Scholar 

  11. M. Zhang, C. Wang, H. Wang et al., Carbonized cotton fabric for high-performance wearable strain sensors. Adv. Funct. Mater. 27(2), 1604795 (2017)

    Article  Google Scholar 

  12. L. Cai, L. Song, P. Luan et al., Super-stretchable, transparent carbon nanotube-based capacitive strain sensors for human motion detection. Sci. Rep. 3, 3048 (2013)

    Article  Google Scholar 

  13. T. Yamada, Y. Hayamizu, Y. Yamamoto et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296 (2011)

    Article  ADS  Google Scholar 

  14. S.K. Krishnan, E. Singh, P. Singh et al., A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 9(16), 8778–8881 (2019)

    Article  Google Scholar 

  15. T. Yamada, Y. Hayamizu, Y. Yamamoto et al., A stretchable carbon nanotube strain sensor for human-motion detection. Nat. Nanotechnol. 6(5), 296 (2011)

    Article  ADS  Google Scholar 

  16. E. Singh, M. Meyyappan, H.S. Nalwa, Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces. 9(40), 34544–34586 (2017)

    Article  Google Scholar 

  17. H. Montazerian, A. Rashidi, A. Dalili et al., Graphene-coated spandex sensors embedded into silicone sheath for composites health monitoring and wearable applications. Small 2019, 1804991 (2019)

    Article  Google Scholar 

  18. S.H. Bae, Y. Lee, B.K. Sharma et al., Graphene-based transparent strain sensor. Carbon 51, 236–242 (2013)

    Article  Google Scholar 

  19. D. Akinwande, N. Petrone, J. Hone, Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014)

    Article  ADS  Google Scholar 

  20. M.V. Kamalakar, C. Groenveld, A. Dankert et al., Long distance spin communication in chemical vapour deposited graphene. Nat. Commun. 6, 6766 (2015)

    Article  ADS  Google Scholar 

  21. I.G. Serrano, J. Panda, F. Denoel et al., Two-dimensional flexible high diffusive spin circuits. Nano Lett. 19(2), 666–673 (2019)

    Article  ADS  Google Scholar 

  22. X. Yu, H. Cheng, M. Zhang et al., Graphene-based smart materials. Nat. Rev. Mater. 2(9), 17046 (2017)

    Article  ADS  Google Scholar 

  23. H. Xu, Y.F. Lu, J.X. Xiang et al., A multifunctional wearable sensor based on a graphene/inverse opal cellulose film for simultaneous, in situ monitoring of human motion and sweat. Nanoscale 10(4), 2090–2098 (2018)

    Article  Google Scholar 

  24. S. Lu, C. Zhao, L. Zhang et al., Real time monitoring of the curing degree and the manufacturing process of fiber reinforced composites with a carbon nanotube buckypaper sensor. RSC Adv. 8(39), 22078–22085 (2018)

    Article  Google Scholar 

  25. X. Chen, L. Shen, C.A. Yuan et al., Molecular model for the charge carrier density dependence of conductivity of polyaniline as chemical sensing materials. Sens. Actuators B Chem. 177, 856–861 (2013)

    Article  Google Scholar 

  26. L.C. Tang, Y.J. Wan, D. Yan et al., The effect of graphene dispersion on the mechanical properties of graphene/epoxy composites. Carbon 60, 16–27 (2013)

    Article  Google Scholar 

  27. S.M.A. Darbandi, M. Nouri, J. Mokhtari, Electrospun nanostructures based on polyurethane/MWCNTs for strain sensing applications. Fibers Polym. 13(9), 1126–1131 (2012)

    Article  Google Scholar 

  28. X. Wang, J. Sparkman, J. Gou, Strain sensing of printed carbon nanotube sensors on polyurethane substrate with spray deposition modeling. Compos. Commun. 3, 1–6 (2017)

    Article  Google Scholar 

  29. L. Vertuccio, V. Vittoria, L. Guadagno et al., Strain and damage monitoring in carbon-nanotube-based composite under cyclic strain. Compos. Part A Appl. Sci. Manuf. 71, 9–16 (2015)

    Article  Google Scholar 

  30. Y.L. Zheng, X.R. Ding, C.C.Y. Poon et al., Unobtrusive sensing and wearable devices for health informatics. IEEE Trans. Biomed. Eng. 61(5), 1538–1554 (2014)

    Article  Google Scholar 

  31. Z. Wang, Y. Huang, J. Sun et al., Polyurethane/cotton/carbon nanotubes core-spun yarn as high reliability stretchable strain sensor for human motion detection. ACS Appl. Mater. Interfaces. 8(37), 24837–24843 (2016)

    Article  Google Scholar 

  32. H. Zhao, Y. Zhang, P.D. Bradford et al., Carbon nanotube yarn strain sensors. Nanotechnology 21(30), 305502 (2010)

    Article  Google Scholar 

  33. T. Yan, Z. Wang, Y.Q. Wang et al., Carbon/graphene composite nanofiber yarns for highly sensitive strain sensors. Mater. Des. 143, 214–223 (2018)

    Article  Google Scholar 

  34. H. Liu, J. Gao, W. Huang et al., Electrically conductive strain sensing polyurethane nanocomposites with synergistic carbon nanotubes and graphene bifillers. Nanoscale 8(26), 12977–12989 (2016)

    Article  ADS  Google Scholar 

  35. D.I. Bower, Temperature dependence of gauge factor and magnetoresistance of some platinum–tungsten strain gauges. J. Phys. E: Sci. Instrum. 5(9), 846 (1972)

    Article  ADS  Google Scholar 

  36. S. Sayed, M. Gamil, F. El-Bab et al., LASER reduced graphene on flexible substrate for strain sensing applications: temperature effect on gauge factor. Key Eng. Mater. Trans. Tech. Publ. 644, 115–119 (2015)

    Article  Google Scholar 

  37. Z. Sun, H. Chang, Graphene and graphene-like two-dimensional materials in photodetection: mechanisms and methodology. ACS Nano 8(5), 4133–4156 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The financial contributions are gratefully acknowledged. This work was financially supported by National Nature Science Fund (11602150, U1733123), Aeronautical Science Foundation (2017ZE54029), Shenyang science project (18-013-0-23), Natural science foundation of Liaoning Province (20170540695, 20180550751), Scientific Research Fund for Public Welfare of Liaoning province (20170014), Scientific Research Project of Liaoning Provincial Education Department (L201725), China Aerospace Science and Technology Group Innovation Fund (17580404) and Liaoning Province Distinguished Professor Program. The financial contributions are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaowei Lu or Keming Ma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 725 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, S., Ma, J., Ma, K. et al. Highly sensitive graphene platelets and multi-walled carbon nanotube-based flexible strain sensor for monitoring human joint bending. Appl. Phys. A 125, 471 (2019). https://doi.org/10.1007/s00339-019-2765-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2765-8

Navigation