Skip to main content
Log in

The effect of Zr content on the thermal stability, dielectric and pyroelectric behavior for lead zirconate prepared by tartrate precursor method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The series of lead titanate with various concentration of zirconium PbZrxTi1−xO3 (PZTO), where (x = 0, 0.2, 0.4 and 0.8), have been prepared successfully by tartrate precursor method and then annealed at 1273 K in atmospheric pressure. The results showed that PZTO samples with varying composition (x) have highly phase purity and crystallized perovskite structure without pyrochlore phase in every composition. The grains of prepared samples are densely packed with few pores and the grain size increases with Zr content. The results showed also the thermal stability of PbZr0.8Ti0.2O3 sample is higher remarkably compared to other samples with lower Zr concentration which is enhanced remarkably with Zr content. The DC resistivity and dielectric behaviors indicate that the phase transition in all the samples is diffused type. It is observed that saturation polarization and coercive field have increased with high Zr content samples (x = 0.4 and 0.8). On the contrary, the remanent polarization has decreased slightly with high Zr content samples. Furthermore, there is a remarkable enhancement of the pyroelectric voltage for PZTO with high Zr content samples (x = 0.4 and 0.8). Therefore, it is recommended that these prepared samples are preferable for use in pyroelectric detector applications such as infrared sensors, infrared thermometers, and laser energy sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. Cui, R. Hensleigh, D. Yao, D. Maurya, P. Kumar, M.G. Kang, X.R. Zheng, Nat. Mater. 18, 234–241 (2019)

    Article  ADS  Google Scholar 

  2. M. Li, H. Tang, X, materials. Nat. Mater. 18, 9 (2019)

    Article  ADS  Google Scholar 

  3. M.A. Hamad, J. Adv. Dielect. 4, 1450026 (2014)

    Article  ADS  Google Scholar 

  4. M.A. Hamad, J. Adv. Dielect. 3 , 1350029 (2013)

    Article  Google Scholar 

  5. M.A. Hamad, Appl. Phys. Lett. 102, 142908 (2013)

    Article  ADS  Google Scholar 

  6. M.A. Hamad, Phase Trans. 86, 307 (2013)

    Article  Google Scholar 

  7. A.H. El-Sayed, M.A. Hamad, “Tailoring thermomagnetic properties in Pb(Zr 0.52Ti 0.48)O 3Ni(1-x)Zn xFe 2O 4”, Phase Trans. (2019). https://doi.org/10.1080/01411594.2019.15970969

  8. M.A. Hamad, J. Adv. Ceram. 2, 308 (2013)

    Article  Google Scholar 

  9. S. Lee, T. Kang, W. Lee, M.M. Afandi, J. Ryu, J. Kim, Sci. Rep. 8, 301 (2018)

    Article  ADS  Google Scholar 

  10. M.A. Hamad, J. Electron. Mater. 43, 522 (2014)

    Article  ADS  Google Scholar 

  11. E. Koushki, J. Baedi, A. Tasbandi, J. Electron. Mater. 48, 1066 (2019)

    Article  ADS  Google Scholar 

  12. F.Z. El Fatnani, M.H. Mazroui, D. Guyomar, Eur. Phys. J. Plus 133, 519 (2018)

    Article  Google Scholar 

  13. Q. Wang, C.R. Bowen, W. Lei, H. Zhang, B. Xie, S. Qiu, S. Jiang, J. Mater. Chem. A 6, 5040–5051 (2018)

    Article  Google Scholar 

  14. M.A. Hamad, Int. J. Thermophys. 34, 1158 (2013)

    Article  ADS  Google Scholar 

  15. S.W. Ko, W. Zhu, C. Fragkiadakis, T. Borman, K. Wang, P. Mardilovich, S. Trolier-McKinstry, J. Am. Ceram. Soc. 102, 1211 (2019)

    Article  Google Scholar 

  16. X. Chen, S. Yan, H. Nie, F. Cao, G. Wang, X. Dong, J. Alloys Compd. 779, 450–455 (2019)

    Article  Google Scholar 

  17. K. Nomura, W. Wang, H. Yamaguchi, K. Nakamura, T. Eshita, S. Ozawa, M. Kojima, Jpn. J. Appl. Phys. 57, 11UF01 (2018)

    Article  Google Scholar 

  18. M.A. Hamad, J. Electron. Mater. 46, 888 (2017)

    Article  ADS  Google Scholar 

  19. D.M. Potrepka, M. Rivas, H. Yu, M. Aindow, G.R. Fox, R.G. Polcawich, J. Mater. Sci. Mater. Electron. 29, 11367 (2018)

    Article  Google Scholar 

  20. G. Zhang, Y. Yang, H. Li, S. Shen, S. Wu, Microsyst. Technol. 22, 1467 (2016)

    Article  Google Scholar 

  21. S.S. Chandratreya, R.M. Fulrath, J.A. Pask, J. Am. Ceram. Soc. 64, 422 (1981)

    Article  Google Scholar 

  22. S. Kim, G.S. Lee, T.R. Shrout, S. Venkataramani, J. Mater. Sci. 26, 4411 (1991)

    Article  ADS  Google Scholar 

  23. S.B. Cho, M. Oledzka, R.E. Riman, J. Cryst. Growth 226, 313–326 (2001)

    Article  ADS  Google Scholar 

  24. A. Khorsand Zak, W.H. Abd Majid, Ceram. Int. 36, 1905 (2010)

    Article  Google Scholar 

  25. J. Hao, Z. Xu, R. Chu, Y. Zhang, Q. Chen, P. Fu, Q. Yin, Mater. Des. 31, 3146 (2010)

    Article  Google Scholar 

  26. A. Tawfik, O.M. Hemeda, A.M.A. Henaish, A.M. Dorgham, Mater. Chem. Phys. 211, 1 (2018)

    Article  Google Scholar 

  27. P. Klug, L.E. Alexander, Direction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York, 1954)

    Google Scholar 

  28. B. Choudhury, A. Choudhury, Mater. Chem. Phys. 131, 666 (2012)

    Article  Google Scholar 

  29. R.D. Shannon, Acta Crystallogr. A32, 751 (1976)

    Article  ADS  Google Scholar 

  30. D.K. Mahato, R.K. Chaudhary, N.N. Das, S.C. Srivastava, Indian J. Pure Appl. Phys. 41, 767 (2003)

    Google Scholar 

  31. M.I. Klinger, J. Phys. C8, 3595 (1975)

    ADS  Google Scholar 

  32. K. Okazaki, K. Nagata, J. Am. Ceram. Soc. 82, 56 (1973)

    Google Scholar 

  33. R. Khazanchi, S. Sharma, T.C. Goel, J. Electroceram. 14, 113 (2005)

    Article  Google Scholar 

  34. M.S. Zakerhamidi, A. Ghanadzadeh, M. Moghadam, Chem. Sci. Trans. 1, 1 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Hamad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemeda, O.M., Tawfik, A., Dorgham, A.M. et al. The effect of Zr content on the thermal stability, dielectric and pyroelectric behavior for lead zirconate prepared by tartrate precursor method. Appl. Phys. A 125, 371 (2019). https://doi.org/10.1007/s00339-019-2666-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2666-x

Navigation