Skip to main content
Log in

A2Zr2O7 (A = Nd, Sm, Gd, Yb) zirconate ceramics with pyrochlore-type structure for high-temperature negative temperature coefficient thermistor

  • Ceramics
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The aim of this paper is to present a novel negative temperature coefficient (NTC) thermistor based on A2Zr2O7 (A = Nd, Sm, Gd, Yb) zirconate ceramics with pyrochlore-type structure for high-temperature application. The zirconate ceramics were synthesized via a solid-state reaction method where rare-earth oxides and ZrO2 were used as starting materials. The physical structures were characterized by X-ray diffraction, scanning electron microscopy, and Raman spectroscopy. It was confirmed that Nd2Zr2O7 and Sm2Zr2O7 are pyrochlore phases, while Yb2Zr2O7 and Gd2Zr2O7 are defect fluorite phases. The electrical property investigated by using resistance–temperature measurements demonstrated that the prepared A2Zr2O7 zirconate ceramics exhibit a typical characteristic of NTC over a wide temperature range between 673 and 1273 K. Particularly, A2Zr2O7, in addition to having high activation energy to ensure better sensitivity, can still maintain higher resistivity under high-temperature environments. Furthermore, the resistivity of A2Zr2O7 is almost independent of the change in oxygen partial pressure. These properties are superior to the classical spinel-type or perovskite-type NTC thermistor, providing valuable information to explore new NTC thermistor for high-temperature applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Feteira A (2009) Negative temperature coefficient resistance (NTCR) ceramic thermistors: an industrial perspective. J Am Ceram Soc 92:967–983

    Article  CAS  Google Scholar 

  2. Kamlo AN, Bernard J, Lelievre C, Houivet D (2011) Synthesis and NTC properties of YCr1-xMnxO3 ceramics sintered under nitrogen atmosphere. J Eur Ceram Soc 31:1457–1463

    Article  CAS  Google Scholar 

  3. Metz R (2000) Electrical properties of N.T.C. thermistors made of manganite ceramics of general spinel structure: Mn3-x-x′MxNx′O4 (0 ≤ x+x′ ≤ 1; M and N being Ni, Co or Cu). Aging phenomenon study. J Mater Sci 35:4705–4711. https://doi.org/10.1023/A:1004851022668

    Article  CAS  Google Scholar 

  4. De Vidales JLM, Garcia-Chain P, Rojas RM, Vila E, Garcia-Martinez O (1998) Preparation and characterization of spinel-type Mn-Ni-Co-O negative temperature coefficient ceramic thermistors. J Mater Sci 33:1491–1496. https://doi.org/10.1023/A:1004351809932

    Article  Google Scholar 

  5. Sumi S, Rao PP, Koshy P (2014) Manganese double substituted pyrochlore type semiconducting oxides for high temperature NTC thermistor applications. J Mater Sci Mater Electron 25:2985–2991

    Article  CAS  Google Scholar 

  6. Nobre MAL, Lanfredi S (2003) Negative temperature coefficient thermistor based on Bi3Zn2Sb3O14 ceramic: an oxide semiconductor at high temperature. Appl Phys Lett 82:2284–2286

    Article  CAS  Google Scholar 

  7. Yu YX, Huang QF, Rhodes S, Fang JN, An LN (2017) SiCNO-GO composites with the negative temperature coefficient of resistance for high-temperature sensor applications. J Am Ceram Soc 100:592–601

    Article  CAS  Google Scholar 

  8. Deepa M, Rao PP, Sumi S, Radhakrishnan ANP, Koshy P (2010) New negative temperature coefficient ceramics in Ca-Ce-Nb-M-O (M = Mo or W) system. J Am Ceram Soc 93:1576–1579

    CAS  Google Scholar 

  9. Zhang B, Zhao Q, Zhao CJ, Chang AM (2017) Comparison of structure and electrical properties of vacuum-sintered and conventional-sintered Ca1-xYxCeNbWO8 NTC ceramics. J Alloy Compd 698:1–6

    Article  CAS  Google Scholar 

  10. Houivet D, Bernard J, Haussonne JM (2004) High temperature NTC ceramic resistors (ambient-1000°C). J Eur Ceram Soc 24:1237–1241

    Article  CAS  Google Scholar 

  11. Yokokawa H, Natsuko S, Tatsuya K, Dokiya M (1991) Chemical thermodynamic considerations in sintering of LaCrO3-based perovskites. J Electrochem Soc 138:1018–1027

    Article  CAS  Google Scholar 

  12. Peck DH, Miller M, Kobertz D, Nickel H, Hilpert K (1996) Vaporization of LaCrO3: partial and integral thermodynamic properties. J Am Ceram Soc 79:3266–3272

    Article  CAS  Google Scholar 

  13. Takeuchi T, Takeda Y, Funahashi R, Aihara T, Tabuchi M, Kageyama H (2000) Rapid preparation of dense (La0.9Sr0.1)CrO3 ceramics by spark-plasma sintering. J Electrochem Soc 147:3979–3982

    Article  CAS  Google Scholar 

  14. Sakai H, Yoshimura K, Ohno H, Kato H, Kambe S, Walstedt RE, Matsuda TD, Haga Y (2004) Superconductivity in a pyrochlore oxide, Cd2Re2O7. J Phys: Condens Matter 16:L9–L12

    Google Scholar 

  15. Deepa M, Rao PP, Sumi S, Radhakrishnan AN, Chandran MR, Koshy P (2011) Structural and electrical properties of nonstoichiometric semiconducting pyrochlores in Ca-Ce-Ti-Nb-O system. Mater Chem Phys 127:162–169

    Article  CAS  Google Scholar 

  16. Sohn JM, Kim MR, Woo SI (2003) Characterization of Ln2B2O7 (Ln = Sm, Eu, Gd, and Tb; B = Ti or Zr) with pyrochlore structure as novel CH4 combustion catalyst. Catal Today 83:289–297

    Article  CAS  Google Scholar 

  17. Vassen R, Cao XQ, Tietz F, Basu D, Stover D (2000) Zirconates as new materials for thermal barrier coatings. J Am Ceram Soc 83:2023–2028

    Article  CAS  Google Scholar 

  18. Xia XL, Liu ZG, Ouyang JH (2011) Order–disorder transformation and enhanced oxide-ionic conductivity of (Sm1−xDyx)2Zr2O7 ceramics. J Power Sources 196:1840–1846

    Article  CAS  Google Scholar 

  19. Nobre MAL, Lanfredi S (2003) Grain boundary electric characterization of Zn7Sb2O12 semiconducting ceramic: a negative temperature coefficient thermistor. J Appl Phys 93:5576–5582

    Article  CAS  Google Scholar 

  20. Mandal BP, Tyagi AK (2007) Preparation and high temperature-XRD studies on a pyrochlore series with the general composition Gd2-xNdxZr2O7. J Alloy Compd 437:260–263

    Article  CAS  Google Scholar 

  21. Subramanian MA, Aravamudan G, Rao GVS (1983) Oxide pyrochlores-a review. Prog Solid State Chem 15:55–143

    Article  CAS  Google Scholar 

  22. Subramanian MA, Sleight AW (1993) Chapter 107: Rare earth pyrochlores. In: Gschneidner KA Jr, Eyring L (eds) Handbook on the physics and chemistry of rare earths. Elsevier, Amsterdam, pp 225–248

    Google Scholar 

  23. Rohrer GS (2001) Structure and bonding in crystalline materials. Cambridge University Press, Cambridge, pp 521–525

    Book  Google Scholar 

  24. Michel D, Jorba MP, Collongues R (1974) Etude de la transformation ordre-desordre de la structure fluorite a la structure pyrochlore pour des phases (1-x)ZrO2-xLn2O3. Mater Res Bull 9:1457–1468

    Article  CAS  Google Scholar 

  25. Glerup M, Nielsen OF, Poulsen FW (2001) The Structural Transformation from the Pyrochlore Structure, A2B2O7, to the Fluorite Structure, AO2. Studied by Raman spectroscopy and defect chemistry modeling. J Solid State Chem 160:25–32

    Article  CAS  Google Scholar 

  26. Blanchard PER, Clements R, Kennedy BJ, Ling CD, Reynolds E, Avdeev M, Stampfl APJ, Zhang Z, Jang LY (2012) Does local disorder occur in the pyrochlore zirconates? Inorg Chem 51:13237–13244

    Article  CAS  Google Scholar 

  27. Popov VV, Menushenkov AP, Ivanov AA, Gaynanov BR, Yastrebtsev AA, d’Acapito F, Puri A, Castro GR, Shchetinin IV, Zheleznyi MV, Zubavichus YV, Ponkratov KV (2019) Comparative analysis of long- and short-range structures features in titanates Ln2Ti2O7 and zirconates Ln2Zr2O7 (Ln = Gd, Tb, Dy) upon the crystallization process. J Phys Chem Solids 130:144–153

    Article  CAS  Google Scholar 

  28. Goodenough JB (2000) Ceramic technology: oxide-ion conductors by design. Nature 404:821–823

    Article  CAS  Google Scholar 

  29. Wilde PJ, Catlow CRA (1998) Defects and diffusion in pyrochlore structured oxides. Solid State Ionics 112:173–183

    Article  CAS  Google Scholar 

  30. Nobre MAL, Lanfredi S (2002) The effect of temperature on the electric conductivity property of Bi3Zn2Sb3O14 pyrochlore type phase. J Mater Sci Mater Electron 13:235–238

    Article  CAS  Google Scholar 

  31. Zhang B, Zhao Q, Chang AM, Wu YQ, Li HY (2016) Spark plasma sintering of MgAl2O4-LaCr0.5Mn0.5O3 composite thermistor ceramics and a comparison investigation with conventional sintering. J Alloy Compd 675:381–386

    Article  CAS  Google Scholar 

  32. Feltz A, Kriegel R, Polzl W (1999) Sr7Mn4O15 ceramics for high temperature NTC thermistors. J Mater Sci Lett 18:1693–1695

    Article  CAS  Google Scholar 

  33. Basu A, Brinkman AW, Hashemi T (2001) NTC characteristics of bismuth based ceramic at high temperature. Int J Inorg Mater 3:1219–1221

    Article  CAS  Google Scholar 

  34. Luo Y, Liu XY (2005) High temperature NTC BaTiO3-based ceramic resistors. Mater Lett 59:3881–3884

    Article  CAS  Google Scholar 

  35. Banerjee A, Akbar SA (2005) A new method for fabrication of stable and reproducible yttria-based thermistors. Sensor Actuator A Phys 87:60–66

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61804178), the Chinese Academy of Sciences (Grant No. YZ201557) and the Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No. 2014388).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bo Gao, Zhi Su or Aimin Chang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 61 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Gao, B., Wang, Q. et al. A2Zr2O7 (A = Nd, Sm, Gd, Yb) zirconate ceramics with pyrochlore-type structure for high-temperature negative temperature coefficient thermistor. J Mater Sci 55, 15405–15414 (2020). https://doi.org/10.1007/s10853-020-05104-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05104-5

Navigation