Skip to main content
Log in

GaN/AlxGa1−xN/GaN heterostructure IMPATT diode for D-band applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, a novel structural impact ionization avalanche transit time (IMPATT) diode configured by GaN/AlxGa1−xN/GaN heterostructure is investigated at the operation frequency of D-Band. Simulation results show that, with Al composition x varies from 0.2 to 0.6, a more localized avalanche region width is obtained, the device breakdown voltage increases gradually, while the RF output power and the DC-to-RF conversion efficiency have also shown significant improvement as compared with the GaN homostructure IMPATT diode. The highest values of the RF output power density and the DC-to-RF conversion efficiency of GaN/Al0.4Ga0.6N/GaN heterostructure are obtained as 1.56 MW/cm2 and 21.99%, larger than that of 1.02 MW/cm2 and 16.37% for GaN homostructure IMPATT diode. Meanwhile, the lowest Q factor can be achieved, which implies that heterostructure IMPATT diodes exhibit better stability and higher growth rate of microwave oscillation compared with conventional IMPATT diodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Biswas, S. Sinha, A. Acharyya, A. Banerjee, S. Pal, H. Satoh, H. Inokawa, J. Infraed. Millim. TE. 39(10), 954–974 (2018)

    Article  Google Scholar 

  2. G.C. Ghivela, J. Senguptal, M. Mitra, IETE. J. Edu. 58(2), 61–66 (2017)

    Article  Google Scholar 

  3. Y. Dai, L.A. Yang, Q. Chen, Y. Wang, Y. Hao, Aip. Adv. 6(5), 061301 (2016)

    Article  Google Scholar 

  4. B. Chakrabarti, D. Ghosh, L.P. Mishra, M. Mitra, In. J. Sci. Eng. Res. 3(2), 1–6 (2012)

    Google Scholar 

  5. N.S. Dogan, J.R. East, M.E. Elta, G.I. Haddad, IEEE Trans. Microw. Theory Tech 35(12), 1308–1315 (1987)

    Article  ADS  Google Scholar 

  6. M.J. Kearney, N.R. Couch, R.S. Smith, J.S. Stephens, J. Appl. Phys. 71(9), 4612–4614 (1992)

    Article  ADS  Google Scholar 

  7. M.J. Bailey, IEEE Trans. Electron Devices 39(8), 1829–1834 (1992)

    Article  ADS  Google Scholar 

  8. S. Banerjee, M. Mitra, J. Semicond. 37(6), 064002 (2016)

    Article  ADS  Google Scholar 

  9. K.K. Chandramohan, R.U. Khan, B.B. Pal, IETE. J. Res. 40(5–6), 261–265 (2015)

    Google Scholar 

  10. P.R. Tripathy, M. Mukherjee, S.P. Pati, Int. J. Mater. Eng. 2(3), 17–22 (2012)

    Article  Google Scholar 

  11. S. Banerjee, A. Acharyya, J.P. Banerjee, Act. and Passi. Electro. Compon.. 2013, 1–7 (2013)

  12. S.R. Pattanaika, J.K. Mishrab, G.N. Dash, IETE. J. Res. 57(4), 351–356 (2011)

    Article  Google Scholar 

  13. P.R. Tripathy, S.K. Choudhury, S.P. Pati, Proc. AIP 1832(1), 120015 (2017)

    Google Scholar 

  14. G.N. Dash, J. Pradhan, S.K. Swain, S.R. Pattanaik, EDSSC Proc. IEEE 1–2 (2013). https://doi.org/10.1109/EDSSC.2013.6628115

  15. R.K. Parida, A.K. Panda, Adv. Sci. Lett. 20(3–4), 668–670 (2014)

    Article  Google Scholar 

  16. A.K. Panda, D. Pavlidis, E.A. Alekseev, IEEE Trans. Electron Devices 48(7), 1473–1475 (2001)

    Article  ADS  Google Scholar 

  17. A. Reklaitis, L. Reggiani, J. Appl. Phys. 97, 043709 (2005)

    Article  ADS  Google Scholar 

  18. A.K. Panda, D. Pavlidis, E. Alekseev, IEEE Trans. Electron Devices 48(4), 820–823 (2001)

    Article  ADS  Google Scholar 

  19. T. Sadi, R.W. Kelsall, N.J. Pilgrim, IEEE Trans. Electron Devices 53(12), 2892–2900 (2006)

    Article  ADS  Google Scholar 

  20. E. Alekseev, D. Pavlidis, Solid State Electron 44(2), 245–252 (2000)

    Article  ADS  Google Scholar 

  21. A. Reklaitis, Appl. Phys. Lett. 86(26), 262110 (2005)

    Article  ADS  Google Scholar 

  22. Y. Cao, R. Chu, R. Li, M. Chen, A.J. Williams, Appl. Phys. Lett. 108(5), 054101 (2016)

    Article  Google Scholar 

  23. Synopsys, TCAD Sentaurus Tutorial, Copyright © 2013 Synopsys, Inc. All rights reserved

  24. A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43(6), 3161 (1991)

    Article  ADS  Google Scholar 

  25. M. Farahmand, K.F. Brennan, IEEE Trans. Electron Devices 46(7), 1319–1325 (1999)

    Article  ADS  Google Scholar 

  26. F. Bertazzi, M. Moresco, E. Bellotti, J. Appl. Phys. 106(6), 063718 (2009)

    Article  ADS  Google Scholar 

  27. C. Bulutay, Semicond. Sci. Tech. 17(10), L59–L62 (2002)

    Article  ADS  Google Scholar 

  28. S.M. Sze, R.M. Ryder, Proc. IEEE 59(8), 1140–1154 (1971)

    Article  Google Scholar 

  29. A. Acharyya, S. Chatterjee, J. Goswami, J. Comput. Electron. 13(3), 739–752 (2014)

    Article  Google Scholar 

  30. O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stutzmann, F. Bernardini, V. Fiorentini, V. Tilak, B. Schaff, L.F. Eastman, J. Phys. Condens. Matter 14(13), 3399–3434 (2002)

    Article  ADS  Google Scholar 

  31. A. Reklaitis, L. Reggiani, J. Appl. Phys. 95(12), 7925–7935 (2004)

    Article  ADS  Google Scholar 

  32. S. Heikman, S. Keller, Y. Wu, J.S. Speck, S.P. DenBaars, U.K. Mishra, J. Appl. Phys. 93(12), 10114–10118 (2003)

    Article  ADS  Google Scholar 

  33. D.L. Scharfetter, H.K. Gummel, IEEE Trans. Electron Devices 16(1), 64–77 (1969)

    Article  ADS  Google Scholar 

  34. H. Eisele, G.I. Haddad, in Modern, ed. by S. M. Sze (Wiley, New York, 1998)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61674117, in part by the Key Program of National Natural Science Foundation of China under Grant 61434006 and in part by the National Natural Science Foundation of China under Grant 61634005.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin’An Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Yang, L., Zhang, X. et al. GaN/AlxGa1−xN/GaN heterostructure IMPATT diode for D-band applications. Appl. Phys. A 125, 205 (2019). https://doi.org/10.1007/s00339-019-2478-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2478-z

Navigation