Skip to main content
Log in

The band alignments modulation of g–MoTe2/WTe2 van der Waals heterostructures

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Searching for novel two-dimensional (2D) materials based nanoscale electronic devices is a hot topic in the current research. A modulation of materials’ specific physical properties by altering external conditions has long been used. There are a variety of routes to improve the specific behavior of materials. In this paper, the structural, electronic, and the corresponding variational characteristics of the graphene(g)-MoTe2/WTe2 heterointerfaces are studied in detail based on ab initio calculations with nonlocal van der Waals (vdW) corrections. We performed research on the band alignments of g–MoTe2/WTe2 contacts and a concise routine to reduce the Schottky barrier and obtain Ohmic contact. The results predict a barrier height of 62 meV and 280 meV for g–MoTe2/WTe2, respectively, in a neutral state. In the applied electric field, the corresponding Schottky barriers can be effectively tuned by various electric fields. The height of the barrier further decreases to 0 under − 0.02/0.16 V/Å and − 0.06/0.08 V/Å for g–MoTe2/WTe2, respectively, and the numerical value of the barrier and the corresponding Schottky type can be regulated in a flexible way. Additionally, theoretical calculation results also demonstrate that g–MoTe2 has a smaller Fermi level pinning effect than g–WTe2, which plays a significant role in the fabrication of novel transistors based 2D materials and it should be a better choice for FETs application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7, 699 (2012)

    Article  ADS  Google Scholar 

  2. C. Zhang, C. Gong, Y. Nie, K.-A. Min, C. Liang, Y.J. Oh, H. Zhang, W. Wang, S. Hong, L. Colombo, 2D Mater. 4, 015026 (2016)

    Article  Google Scholar 

  3. B. Radisavljevic, A. Radenovic, J. Brivio, iV. Giacometti, A. Kis, Nat. Nanotechnol. 6, 147 (2011)

    Article  ADS  Google Scholar 

  4. L. Britnell, R.M. Ribeiro, A. Eckmann, R. Jalil, B.D. Belle, A. Mishchenko, Y.J. Kim, R.V. Gorbachev, T. Georgiou, S.V. Morozov, Science 340, 1311 (2013)

    Article  ADS  Google Scholar 

  5. H. Li, K. Yu, Z. Tang, H. Fu, Z. Zhu, Phys. Chem. Chem. Phys. 18, 14074 (2016)

    Article  Google Scholar 

  6. S.-K. Lee, H.Y. Jang, S. Jang, E. Choi, B.H. Hong, J. Lee, S. Park, J.-H. Ahn, Nano Lett. 12, 3472 (2012)

    Article  ADS  Google Scholar 

  7. K.C. Yung, W.M. Wu, M.P. Pierpoint, F.V. Kusmartsev, Contemp. Phys. 54, 233 (2013)

    Article  ADS  Google Scholar 

  8. N. Petrone, T. Chari, I. Meric, L. Wang, K.L. Shepard, J. Hone, ACS Nano. 9, 8953 (2015)

    Article  Google Scholar 

  9. L. Yu, D. El-Damak, U. Radhakrishna, X. Ling, A. Zubair, Y. Lin, Y. Zhang, M.-H. Chuang, Y.-H. Lee, D. Antoniadis, Nano Lett. 16, 6349 (2016)

    Article  ADS  Google Scholar 

  10. H. Fang, S. Chuang, T.C. Chang, K. Takei, T. Takahashi, A. Javey, Nano Lett. 12, 3788 (2012)

    Article  ADS  Google Scholar 

  11. S. Das, H.-Y. Chen, A.V. Penumatcha, J. Appenzeller, Nano Lett. 13, 100 (2012)

    Article  ADS  Google Scholar 

  12. S. Kim, A. Konar, W.-S. Hwang, J.H. Lee, J. Lee, J. Yang, C. Jung, H. Kim, J.-B. Yoo, J.-Y. Choi, Nat. Commun. 3, ncomms2018 (2012)

    Google Scholar 

  13. J. Kang, W. Liu, D. Sarkar, D. Jena, K. Banerjee, Phys. Rev. X. 4, 031005 (2014)

    Google Scholar 

  14. K. Xu, Y. Xu, H. Zhang, B. Peng, H. Shao, G. Ni, J. Li, M. Yao, H. Lu, H. Zhu, Phys. Chem. Chem. Phys. 20, 30351 (2018)

    Article  Google Scholar 

  15. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  16. W. Kohn, L.J. Sham, Phys. Rev. 140, A1133 (1965)

    Article  ADS  Google Scholar 

  17. L. Xu, W.-Q. Huang, L.-L. Wang, Z.-A. Tian, W. Hu, Y. Ma, X. Wang, A. Pan, G.-F. Huang, Chem. Mater. 27, 1612 (2015)

    Article  Google Scholar 

  18. G. Kresse, Phys. Rev. B 54, 169 (1996)

    Article  Google Scholar 

  19. L. Huang, B. Li, M. Zhong, Z. Wei, J. Li, J. Phys. Chem. C 121, 9305 (2017)

    Article  Google Scholar 

  20. J.H. Rose, J. Ferrante, J.R. Smith, Phys. Rev. Lett. 47, 675 (1981)

    Article  ADS  Google Scholar 

  21. J. Klimeš, D.R. Bowler, A. Michaelides, J. Phys. Condens. Matter 22, 022201 (2009)

    Article  ADS  Google Scholar 

  22. Z. Wang, Q. Chen, J. Wang, J. Phys. Chem. C 119, 4752 (2015)

    Article  Google Scholar 

  23. R. Zacharia, H. Ulbricht, T. Hertel, Phys. Rev. B 69, 155406 (2004)

    Article  ADS  Google Scholar 

  24. W. Hu, Z. Li, J. Yang, J. Chem. Phys. 138, 054701 (2013)

    Article  ADS  Google Scholar 

  25. A. Du, S. Sanvito, Z. Li, D. Wang, Y. Jiao, T. Liao, Q. Sun, Y.H. Ng, Z. Zhu, R. Amal, J. Am. Chem. Soc. 134, 4393 (2012)

    Article  Google Scholar 

  26. W. Hu, Z. Li, J. Yang, J. Chem. Phys. 138, 124706 (2013)

    Article  ADS  Google Scholar 

  27. B. Peng, H. Zhang, H. Shao, Z. Ning, Y. Xu, G. Ni, H. Lu, D.W. Zhang, H. Zhu, Mater. Res. Lett. 5, 399 (2017)

    Article  Google Scholar 

  28. T. Tsafack, B.I. Yakobson, Phys. Rev. B 93, 165434 (2016)

    Article  ADS  Google Scholar 

  29. B. Amin, T.P. Kaloni, U. Schwingenschlögl, Rsc Adv. 4, 34561 (2014)

    Article  Google Scholar 

  30. Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, B. Huang, Phys. Chem. Chem. Phys. 13, 15546 (2011)

    Article  Google Scholar 

  31. Y. Chen, Y. Li, J. Wu, W. Duan, Nanoscale. 9, 2068 (2017)

    Article  Google Scholar 

  32. F. Wang, L. Yin, Z. Wang, K. Xu, F. Wang, T.A. Shifa, Y. Huang, Y. Wen, C. Jiang, J. He, Appl. Phys. Lett. 109, 193111 (2016)

    Article  ADS  Google Scholar 

  33. T. Eknapakul, P.D.C. King, M. Asakawa, P. Buaphet, R.H. He, S.K. Mo, H. Takagi, K.M. Shen, F. Baumberger, T. Sasagawa, Nano Lett. 14, 1312 (2014)

    Article  ADS  Google Scholar 

  34. W. Chen, E.J.G. Santos, W. Zhu, E. Kaxiras, Z. Zhang, Nano Lett. 13, 509 (2013)

    Article  ADS  Google Scholar 

  35. H. Hasegawa, T. Sawada, Thin Solid Films 103, 119 (1983)

    Article  ADS  Google Scholar 

  36. S. McDonnell, R. Addou, C. Buie, R.M. Wallace, C.L. Hinkle, ACS Nano. 8, 2880 (2014)

    Article  Google Scholar 

  37. C. Gong, L. Colombo, R.M. Wallace, K. Cho, Nano Lett. 14, 1714 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Science and Technology Research Program of Chongqing Municipal Education Commission (Grant No. KJQN201800501, KJQN201800528), the Program for Leading Talents in Science and Technology Innovation of Chongqing City (No. cstc2014kjcxljrc0023) and Chongqing Normal University Fund Project (Grant No. 17XLB012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Li.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Cui, Y., Wang, T. et al. The band alignments modulation of g–MoTe2/WTe2 van der Waals heterostructures. Appl. Phys. A 125, 147 (2019). https://doi.org/10.1007/s00339-019-2458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2458-3

Navigation