Skip to main content

Advertisement

Log in

Computational understanding of electronic properties of graphene/\({\mathrm{{PtS}}_2}\) heterostructure under electric field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Graphene-based two-dimensional van der Waals heterostructures (vdWH) have recently shown a great potential for high-performance nanodevices. Here, we design a novel vdWH, consisting of the graphene and a noble transition metal dichalcogenide \({\mathrm{{PtS}}_2}\) monolayer and investigate its electronic properties as well as the effect of electric field. We find that the key intrinsic characteristics of both the graphene and \({\mathrm{{PtS}}_2}\) monolayers are well preserved due to the weak vdW interactions. The graphene is found to form an n-type Schottky contact with the \({\mathrm{{PtS}}_2}\) monolayer with a small barrier height of 0.11 eV. Moreover, this small barrier height of the \(\mathrm{{G}}/{\mathrm{{PtS}}_2}\) vdWH is known to be very sensitive to the external electric field. It can be controlled and turned to the Ohmic contact under electric field. These findings could provide significant knowledge for designing novel electronic and optoelectronic devices of such heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Science 306(5696), 666 (2004)

    ADS  Google Scholar 

  2. F. Schwierz, Nat. Nanotechnol. 5(7), 487 (2010)

    ADS  Google Scholar 

  3. L. Vicarelli, M. Vitiello, D. Coquillat, A. Lombardo, A.C. Ferrari, W. Knap, M. Polini, V. Pellegrini, A. Tredicucci, Nat. Mater. 11(10), 865 (2012)

    ADS  Google Scholar 

  4. A.C. Neto, F. Guinea, N.M. Peres, K.S. Novoselov, A.K. Geim, Rev. Mod. Phys. 81(1), 109 (2009)

    ADS  Google Scholar 

  5. D. Ospina, C. Duque, J. Correa, E.S. Morell, Superlattices Microstruct. 97, 562 (2016)

    ADS  Google Scholar 

  6. C.V. Nguyen, N.N. Hieu, C.A. Duque, N.A. Poklonski, V.V. Ilyasov, N.V. Hieu, L. Dinh, Q.K. Quang, L.V. Tung, H.V. Phuc, Opt. Mater. 69, 328 (2017)

    ADS  Google Scholar 

  7. A. Tiutiunnyk, C. Duque, F. Caro-Lopera, M. Mora-Ramos, J. Correa, Phys. E 112, 36 (2019)

    Google Scholar 

  8. Q.H. Wang, K. Kalantar-Zadeh, A. Kis, J.N. Coleman, M.S. Strano, Nat. Nanotechnol. 7(11), 699 (2012)

    ADS  Google Scholar 

  9. K.F. Mak, J. Shan, Nat. Photonics 10(4), 216 (2016)

    ADS  Google Scholar 

  10. D. Jariwala, V.K. Sangwan, L.J. Lauhon, T.J. Marks, M.C. Hersam, ACS Nano 8(2), 1102 (2014)

    Google Scholar 

  11. Q. Tang, Z. Zhou, Z. Chen, Wiley Interdiscip. Rev. Comput. Mol. Sci. 5(5), 360 (2015)

    Google Scholar 

  12. M. Xu, T. Liang, M. Shi, H. Chen, Chem. Rev. 113(5), 3766 (2013)

    Google Scholar 

  13. Y. Zhao, J. Qiao, P. Yu, Z. Hu, Z. Lin, S.P. Lau, Z. Liu, W. Ji, Y. Chai, Adv. Mater. 28(12), 2399 (2016)

    Google Scholar 

  14. L. Li, W. Wang, Y. Chai, H. Li, M. Tian, T. Zhai, Adv. Func. Mater. 27(27), 1701011 (2017)

    Google Scholar 

  15. Y.F. Yuan, Z.T. Zhang, W.K. Wang, Y.H. Zhou, X.L. Chen, C. An, R.R. Zhang, Y. Zhou, C.C. Gu, L. Li, X.J. Li, Z.R. Yang, Chin. Phys. B 27(6), 066201 (2018)

    ADS  Google Scholar 

  16. W. Zhang, Z. Huang, W. Zhang, Y. Li, Nano Res. 7(12), 1731 (2014)

    Google Scholar 

  17. D. Pierucci, H. Henck, J. Avila, A. Balan, C.H. Naylor, G. Patriarche, Y.J. Dappe, M.G. Silly, F. Sirotti, A.C. Johnson et al., Nano Lett. 16(7), 4054 (2016)

    ADS  Google Scholar 

  18. K. Kim, S. Larentis, B. Fallahazad, K. Lee, J. Xue, D.C. Dillen, C.M. Corbet, E. Tutuc, ACS Nano 9(4), 4527 (2015)

    Google Scholar 

  19. M. Sun, J.P. Chou, J. Yu, W. Tang, J. Mater. Chem. C 5(39), 10383 (2017)

    Google Scholar 

  20. H.C. Diaz, J. Avila, C. Chen, R. Addou, M.C. Asensio, M. Batzill, Nano Lett. 15(2), 1135 (2015)

    ADS  Google Scholar 

  21. C. Jin, F.A. Rasmussen, K.S. Thygesen, J. Phys. Chem. C 119(34), 19928 (2015)

    Google Scholar 

  22. Z.B. Aziza, H. Henck, D. Pierucci, M.G. Silly, E. Lhuillier, G. Patriarche, F. Sirotti, M. Eddrief, A. Ouerghi, ACS Nano 10(10), 9679 (2016)

    Google Scholar 

  23. Z.B. Aziza, D. Pierucci, H. Henck, M.G. Silly, C. David, M. Yoon, F. Sirotti, K. Xiao, M. Eddrief, J.C. Girard et al., Phys. Rev. B 96(3), 035407 (2017)

    ADS  Google Scholar 

  24. H.V. Phuc, N.N. Hieu, B.D. Hoi, C.V. Nguyen, Phys. Chem. Chem. Phys. 20(26), 17899 (2018)

    Google Scholar 

  25. M. Sun, J.P. Chou, J. Yu, W. Tang, Phys. Chem. Chem. Phys. 19(26), 17324 (2017)

    Google Scholar 

  26. K.D. Pham, N.N. Hieu, H.V. Phuc, I. Fedorov, C. Duque, B. Amin, C.V. Nguyen, Appl. Phys. Lett. 113(17), 171605 (2018)

    ADS  Google Scholar 

  27. Y. Ma, Y. Dai, M. Guo, C. Niu, B. Huang, Nanoscale 3(9), 3883 (2011)

    ADS  Google Scholar 

  28. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matt. 21(39), 395502 (2009)

    Google Scholar 

  29. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77(18), 3865 (1996)

    ADS  Google Scholar 

  30. S. Grimme, J. Comput. Chem. 27, 1787 (2006)

    Google Scholar 

  31. W. Tang, E. Sanville, G. Henkelman, J. Phys. Condens. Matt. 21(8), 084204 (2009)

    ADS  Google Scholar 

  32. E. Sanville, S.D. Kenny, R. Smith, G. Henkelman, J. Comput. Chem. 28(5), 899 (2007)

    Google Scholar 

  33. G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mater. Sci. 36(3), 354 (2006)

    Google Scholar 

  34. M. Yu, D.R. Trinkle, J. Chem. Phys. 134(6), 064111 (2011)

    ADS  Google Scholar 

  35. G. Liu, Y. Gan, R. Quhe, P. Lu, Chem. Phys. Lett. 709, 65 (2018)

    ADS  Google Scholar 

  36. J.E. Padilha, A. Fazzio, A.J.R. da Silva, Phys. Rev. Lett. 114, 066803 (2015)

    ADS  Google Scholar 

  37. T. Kaloni, L. Kou, T. Frauenheim, U. Schwingenschlögl, Appl. Phys. Lett. 105(23), 233112 (2014)

    ADS  Google Scholar 

  38. F. Zhang, W. Li, Y. Ma, Y. Tang, X. Dai, RSC Adv. 7(47), 29350 (2017)

    Google Scholar 

  39. Y. Ma, Y. Dai, W. Wei, C. Niu, L. Yu, B. Huang, J. Phys. Chem. C 115(41), 20237 (2011)

    Google Scholar 

  40. M. Gmitra, D. Kochan, P. Högl, J. Fabian, Phys. Rev. B 93(15), 155104 (2016)

    ADS  Google Scholar 

  41. M. Sun, J.P. Chou, Q. Ren, Y. Zhao, J. Yu, W. Tang, Appl. Phys. Lett. 110(17), 173105 (2017)

    ADS  Google Scholar 

  42. S. Sattar, U. Schwingenschlogl, A.C.S. Appl, Mater. Interfaces 9(18), 15809 (2017)

    Google Scholar 

  43. Z. Guan, S. Ni, S. Hu, RSC Adv. 7(72), 45393 (2017)

    Google Scholar 

  44. K.F. Mak, C.H. Lui, J. Shan, T.F. Heinz, Phys. Rev. Lett. 102(25), 256405 (2009)

    ADS  Google Scholar 

  45. C. Vicario, B. Monoszlai, C.P. Hauri, Phys. Rev. Lett. 112(21), 213901 (2014)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khang D. Pham.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, C.V., Phung, H.T.T. & Pham, K.D. Computational understanding of electronic properties of graphene/\({\mathrm{{PtS}}_2}\) heterostructure under electric field. Appl. Phys. A 125, 536 (2019). https://doi.org/10.1007/s00339-019-2845-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2845-9

Navigation