Skip to main content
Log in

Effect of nanostructures on rapid boiling of water films: a comparative study by molecular dynamics simulation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Nanostructures, such as post, sphere, cone, and cuboid, can drastically enhance the rapid boiling heat transfer from a solid plate to adjacent liquid molecules. In this work, we demonstrate the effect of nanostructures on the rapid boiling of water films by molecular dynamics simulation. The comparison between cubic and T-shaped nanostructures which are based on a copper plate is implemented. Rate of temperature rise and departure velocity from the structure for water boiling on T-shaped nanostructure have the greatest values followed by cubic nanostructure and flat plate. The densities of water films above these nanostructures are higher than that above flat plate. Departure velocity and restrictions on the movement of water molecules due to the structure beneath the cuboids can affect the heat transfer coefficient between water film and copper plate with T-shaped nanostructure. The heat flux vs. the time in the non-equilibrium phase change stage is given. With the variation of heat flux vs. time being similar, cubic and T-shaped nanostructures show greater heat fluxes than that of the plate when the vapor films appear. It is strongly recommended to use the new nanostructure for rapid boiling, and further study on the mechanisms of liquid molecules behaviors in nanostructures with various structural parameters is suggested for process intensification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.C. Reid, Adv. Chem. Eng. 12, 105 (1983)

    Article  Google Scholar 

  2. X. Huai, G. Wang, R. Jin, T. Yin, Y. Zou, Heat Mass Transf. 45, 117 (2008)

    Article  ADS  Google Scholar 

  3. P. Wagener, A. Schwenke, B.N. Chichkov, S. Barcikowski, J. Phys. Chem. C 114, 7618 (2010)

    Article  Google Scholar 

  4. R. Kelly, A. Miotello, J. Appl. Phys. 87, 3177 (2000)

    Article  ADS  Google Scholar 

  5. S.I. Kudryashov, S.D. Allen, J. Appl. Phys. 100, 104908 (2006)

    Article  ADS  Google Scholar 

  6. X. Yang, Y.Y. Yan, Appl. Therm. Eng. 31, 640 (2011)

    Article  Google Scholar 

  7. V.G. Baidakov, K.S. Bobrov, J. Chem. Phys. 140, 184506 (2014)

    Article  ADS  Google Scholar 

  8. V.H. Man, M.S. Li, P. Derreumaux, P.H. Nguyen, J. Chem. Phys. 148, 094505 (2018)

    Article  ADS  Google Scholar 

  9. S.M.T.K.S. Matsumoto, Y.Y.T. Kimura, Microscale Thermophys. Eng. 2, 49 (1998)

    Article  Google Scholar 

  10. Y. Dou, L.V. Zhigilei, N. Winograd, B.J. Garrison, J. Phys. Chem. A 105, 2748 (2001)

    Article  Google Scholar 

  11. S.C. Maroo, J. Phys. Chem. Lett. 6, 3765 (2015)

    Article  Google Scholar 

  12. X. Gu, H.M. Urbassek, Appl. Phys. B 81, 675 (2005)

    Article  ADS  Google Scholar 

  13. M. Jakob, W. Fritz, Forsch. Gebiete Ingenieur. A 2, 435 (1931)

    Article  Google Scholar 

  14. A.K.M.M. Morshed, T.C. Paul, J.A. Khan, Appl. Phys. A 105, 445 (2011)

    Article  ADS  Google Scholar 

  15. H.R. Seyf, Y. Zhang, J. Heat Transf. 135, 121503 (2013)

    Article  Google Scholar 

  16. H.R. Seyf, Y. Zhang, Int. J. Heat Mass Transf. 66, 613 (2013)

    Article  Google Scholar 

  17. T. Fu, Y. Mao, Y. Tang, Y. Zhang, W. Yuan, Nanoscale Microscale Thermophys. Eng. 19, 17 (2015)

    Article  Google Scholar 

  18. T. Fu, Y. Mao, Y. Tang, Y. Zhang, W. Yuan, Heat Mass Transf. 52, 1469 (2016)

    Article  ADS  Google Scholar 

  19. W. Wang, H. Zhang, C. Tian, X. Meng, Nanoscale Res. Lett. 10, 158 (2015)

    Article  ADS  Google Scholar 

  20. S. Zhang, F. Hao, H. Chen, W. Yuan, Y. Tang, X. Chen, Appl. Therm. Eng. 113, 208 (2017)

    Article  Google Scholar 

  21. Y. Tang, Y. He, L. Ma, X. Zhang, J. Xue, Int. J. Heat Mass Transf. 127, 237 (2018)

    Article  Google Scholar 

  22. A. Bejan, M. Almogbel, Int. J. Heat Mass Transf. 43, 2101 (2000)

    Article  Google Scholar 

  23. B. Liu, Y. Bando, Z. Wang, C. Li, M. Gao, M. Mitome, X. Jiang, D. Golberg, Cryst. Growth Des. 10, 4143 (2010)

    Article  Google Scholar 

  24. Z. Wang, J. Cui, Y. Liang, T. Chen, M. Lee, B. Yin, L.Y. Jin, J. Polym. Sci. A 51, 5021 (2013)

    Article  Google Scholar 

  25. Y. Zhou, M.W. Wu, J. Phys. Cond. Matt. 26, 065801 (2014)

    Article  Google Scholar 

  26. C.S. Wang, J.S. Chen, J. Shiomi, S. Maruyama, Int. J. Therm. Sci. 46, 1203 (2007)

    Article  Google Scholar 

  27. W.L. Jorgensen, J. Chandrasekhar, J.D. Madura, J. Chem. Phys. 79, 926 (1983)

    Article  ADS  Google Scholar 

  28. W.C. Swope, H.C. Andersen, P.H. Berens, K.R. Wilson, J. Chem. Phys. 76, 637 (1982)

    Article  ADS  Google Scholar 

  29. S. Nosé, J. Chem. Phys. 81, 511 (1984)

    Article  ADS  Google Scholar 

  30. S. Plimpton, J. Comput. Phys. 117, 1 (1995)

    Article  ADS  Google Scholar 

  31. Y. Chen, Y. Zou, Y. Wang, D. Han, B. Yu, Int. Commun. Heat Mass Transf. 98, 135 (2018)

    Article  Google Scholar 

  32. Y. Chen, Y. Zou, D. Sun, Y. Wang, B. Yu, Int. J. Heat Mass Transf. 118, 1143 (2018)

    Article  Google Scholar 

  33. T. Yamamoto, M. Matsumoto, J. Therm. Sci. Technol. 7, 334 (2012)

    Article  Google Scholar 

  34. K.F. Rabbi, S.I. Tamim, A.H.M. Faisal, K.M. Mukut, M.N. Hasan, AIP Conf. Proc. 1851, 020102 (2017)

    Article  Google Scholar 

  35. S.M. Shavik, M.N. Hasan, A.M. Morshed, J. Electron. Packag. 138, 010904 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial supports from the National Natural Science Foundation of China (No. 51876058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leping Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Zhou, L., Jin, L. et al. Effect of nanostructures on rapid boiling of water films: a comparative study by molecular dynamics simulation. Appl. Phys. A 125, 142 (2019). https://doi.org/10.1007/s00339-019-2453-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2453-8

Navigation