Skip to main content
Log in

Molecular dynamics simulation of condensation on nanostructured surface in a confined space

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Understanding heat transfer characteristics of phase change and enhancing thermal energy transport in nanoscale are of great interest in both theoretical and practical applications. In the present study, we investigated the nanoscale vaporization and condensation by using molecular dynamics simulation. A cuboid system is modeled by placing hot and cold walls in the bottom and top ends and filling with working fluid between the two walls. By setting two different high temperatures for the hot wall, we showed the normal and explosive vaporizations and their impacts on thermal transport. For the cold wall, the cuboid nanostructures with fixed height, varied length, width ranging from 4 to 20 layers, and an interval of four layers are constructed to study the effects of condensation induced by different nanostructures. For vaporization, the results showed that higher temperature of the hot wall led to faster transport of the working fluid as a cluster moving from the hot wall to the cold wall. However, excessive temperature of the hot wall causes explosive boiling, which seems not good for the transport of heat due to the less phase change of working fluid. For condensation, the results indicate that nanostructure facilitates condensation, which could be affected not only by the increased surface area but also by the distances between surfaces of the nanostructures and the cold end. There is an optimal nanostructure scheme which maximizes the phase change rate of the entire system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

H :

Height of the modeled system (Å)

L :

Length of the modeled system (Å)

r :

Distance between two atoms (Å)

S :

Surface area

R :

Surface area ratio

W :

Width of the modeled system (Å)

α :

Lattice constant (Å)

σ :

Finite distance at which the interatomic potential is zero (Å)

ε :

Depth of the L–J potential (eV)

\( \emptyset \) :

Potential function (eV)

Ar:

Argon

Cu:

Copper

n :

Cases of simulation

References

  1. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, S.R. Phillpot, Nanoscale thermal transport. J. Appl. Phys. 93, 793–818 (2003)

    Article  ADS  Google Scholar 

  2. D.G. Cahill, P.V. Braun, G. Chen, D.R. Clarke, S. Fan, K.E. Goodson, P. Keblinski, W.P. King, G.D. Mahan, A. Majumdar, H.J. Maris, S.R. Phillpot, E. Pop, L. Shi, Nanoscale thermal transport. II. 2003–2012. Appl. Phys. Rev. 1, 011305 (2014)

    Article  ADS  Google Scholar 

  3. J. Tigner, M.M. Sedeh, T. Sharpe, A. Bufford, T. Floyd-Smith, Analysis of a platform for thermal management studies of microelectronics cooling methods. Appl. Therm. Eng. 60, 88–95 (2013)

    Article  Google Scholar 

  4. R. Hopkins, A. Faghri, D. Khrustalev, Flat miniature heat pipes with micro capillary grooves. J. Heat Transf. 121, 102–109 (1999)

    Article  Google Scholar 

  5. Y.J. Chen, P.Y. Wang, Z.H. Liu, Y.Y. Li, Heat transfer characteristics of a new type of copper wire-bonded flat heat pipe using nanofluids. Int. J. Heat Mass Transf. 67, 548–559 (2013)

    Article  Google Scholar 

  6. F. Lefèvre, J.-B. Conrardy, M. Raynaud, J. Bonjour, Experimental investigations of flat plate heat pipes with screen meshes or grooves covered with screen meshes as capillary structure. Appl. Therm. Eng. 37, 95–102 (2012)

    Article  Google Scholar 

  7. X. Lu, T.-C. Hua, Y. Wang, Thermal analysis of high power LED package with heat pipe heat sink. Microelectron. J. 42, 1257–1262 (2011)

    Article  Google Scholar 

  8. C. Ding, G. Soni, P. Bozorgi, B.D. Piorek, C.D. Meinhart, N.C. MacDonald, A flat heat pipe architecture based on nanostructured titania. J. Microelectromech. Syst. 19, 878–884 (2010)

    Article  Google Scholar 

  9. B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. I. General method. J. Chem. Phys. 31, 459–466 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  10. J. Zhang, F. Leroy, F. Müller-Plathe, Evaporation of nanodroplets on heated substrates: a molecular dynamics simulation study. Langmuir 29, 9770–9782 (2013)

    Article  Google Scholar 

  11. A.K.M.M. Morshed, T.C. Paul, J.A. Khan, Effect of nanostructures on evaporation and explosive boiling of thin liquid films: a molecular dynamics study. Appl. Phys. A 105, 445–451 (2011)

    Article  ADS  Google Scholar 

  12. H.R. Seyf, Y. Zhang, Molecular dynamics simulation of normal and explosive boiling on nanostructured surface. J. Heat Transf. 135, 121503 (2013)

    Article  Google Scholar 

  13. H.R. Seyf, Y. Zhang, Effect of nanotextured array of conical features on explosive boiling over a flat substrate: a nonequilibrium molecular dynamics study. Int. J. Heat Mass Transf. 66, 613–624 (2013)

    Article  Google Scholar 

  14. Y. Mao, Y. Zhang, Molecular dynamics simulation on rapid boiling of water on a hot copper plate. Appl. Therm. Eng. 62, 607–612 (2014)

    Article  Google Scholar 

  15. H. Hu, Y. Sun, Effect of nanopatterns on Kapitza resistance at a water-gold interface during boiling: a molecular dynamics study. J. Appl. Phys. 112, 053508 (2012)

    Article  ADS  Google Scholar 

  16. P. Yi, D. Poulikakos, J. Walther, G. Yadigaroglu, Molecular dynamics simulation of vaporization of an ultra-thin liquid argon layer on a surface. Int. J. Heat Mass Transf. 45, 2087–2100 (2002)

    Article  MATH  Google Scholar 

  17. J. Yu, H. Wang, A molecular dynamics investigation on evaporation of thin liquid films. Int. J. Heat Mass Transf. 55, 1218–1225 (2012)

    Article  MATH  Google Scholar 

  18. S.C. Maroo, J.N. Chung, Heat transfer characteristics and pressure variation in a nanoscale evaporating meniscus. Int. J. Heat Mass Transf. 53, 3335–3345 (2010)

    Article  MATH  Google Scholar 

  19. C.S. Wang, J.S. Chen, J. Shiomi, S. Maruyama, A study on the thermal resistance over solid–liquid–vapor interfaces in a finite-space by a molecular dynamics method. Int. J. Therm. Sci. 46, 1203–1210 (2007)

    Article  Google Scholar 

  20. G. Nagayama, M. Kawagoe, A. Tokunaga, T. Tsuruta, On the evaporation rate of ultra-thin liquid film at the nanostructured surface: a molecular dynamics study. Int. J. Therm. Sci. 49, 59–66 (2010)

    Article  Google Scholar 

  21. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–42 (1995)

    Article  ADS  MATH  Google Scholar 

  22. W. Humphrey, A. Dalke, K. Schulten, VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996)

    Article  Google Scholar 

  23. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, J.R. Haak, Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684–3690 (1984)

    Article  ADS  Google Scholar 

  24. M.S. Zabaloy, V.R. Vasquez, E.A. Macedo, Description of self-diffusion coefficients of gases, liquids and fluids at high pressure based on molecular simulation data. Fluid Phase Equilib. 242, 43–56 (2006)

    Article  Google Scholar 

  25. H. Watanabe, N. Ito, C.K. Hu, Phase diagram and universality of the Lennard–Jones gas–liquid system. J. Chem. Phys. 136, 204102 (2012)

    Article  ADS  Google Scholar 

  26. T. Jia, Y. Zhang, H.B. Ma, J.K. Chen, Investigation of the characteristics of heat current in a nanofluid based on molecular dynamics simulation. Appl. Phys. A 108, 537–544 (2012)

    Article  ADS  Google Scholar 

  27. K. Nakanishi, K. Toukubo, Molecular dynamics studies of Lennard–Jones liquid mixtures. V. Local composition in several kinds of equimolar mixtures with different combining rule. J. Chem. Phys. 70, 5848–5850 (1979)

    Article  ADS  Google Scholar 

  28. P.H. Hünenberger, Thermostat algorithms for molecular dynamics simulations. Adv. Polym. Sci. 173, 105–149 (2005)

    Article  Google Scholar 

  29. S. Nosé, Constant-temperature molecular dynamics. J. Phys. Condens. Matter. 115, 115–119 (1990)

    ADS  Google Scholar 

  30. S. Nosé, A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 100, 191–198 (2002)

    Article  ADS  Google Scholar 

  31. C.Y. Ji, Y.Y. Yan, A molecular dynamics simulation of liquid–vapour–solid system near triple-phase contact line of flow boiling in a microchannel. Appl. Therm. Eng. 28, 195–202 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The financial support for this research project from the 111 Project No. B12034 and US National Science Foundation under Grant Number CBET-1404482 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Ji, P. & Zhang, Y. Molecular dynamics simulation of condensation on nanostructured surface in a confined space. Appl. Phys. A 122, 496 (2016). https://doi.org/10.1007/s00339-016-0032-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0032-9

Keywords

Navigation