Skip to main content
Log in

Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

With the aim to design broadband microwave absorbers with optically transparent, flexible and stable performances in 8–18 GHz, a sandwich structure is designed and fabricated by sandwiching the periodic arrayed ITO film into two transparent and flexible polyvinyl chloride layers. With the induced metamaterial structure to tailor the effective input impedance, the proposed sandwich absorber can realize more than 90% absorption in 8–18 GHz for both TE and TM polarization when the incident angle is less than 30°. Meanwhile, the optical transmittance of the designed absorber reaches more than 80% transmittance with the wavelength larger than 532 nm, and the average optical transmittance for the visible light (400–800 nm) is 80.2%. The proposed absorber shows broadband microwave absorption in both X and Ku band with simultaneously high transmittance in visible frequencies, indicating that the proposed sandwich metamaterial absorber has great potentials for developing optical transparent absorbing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Qin, C. Brosseau, J. Appl. Phys. 111, 061301 (2012)

    Article  ADS  Google Scholar 

  2. X.W. Yin, L. Kong, L.T. Zhang, L.F. Cheng, N. Travitzky, P. Greil, Int. Mater. Rev. 59, 326–355 (2014)

    Google Scholar 

  3. D. Micheli, C. Apollo, R. Pastore, M. Marchetti, Compos. Sci. Technol. 70, 400–409 (2010)

    Article  Google Scholar 

  4. W.Y. Duan, X.W. Yin, Q. Li, X.M. Liu, L.F. Cheng, L.T. Zhang, J. Eur. Ceram. Soc. 34, 257–266 (2014)

    Article  Google Scholar 

  5. L. Kong, X. Yin, M. Han, X. Yuan, Z. Hou, F. Ye, L. Zhang, L. Cheng, Z. Xu, J. Huang, Carbon 111, 94–102 (2017)

    Article  Google Scholar 

  6. Q. Zhou, X.W. Yin, F. Ye, X.F. Liu, L.F. Cheng, L.T. Zhang, Mater. Design 123, 46–53 (2017)

    Article  Google Scholar 

  7. D. Bensafieddine, F. Djerfaf, F. Chouireb, D. Vincent, Appl. Phys. A Mater. Sci. Process. 123, 248 (2017)

    Article  ADS  Google Scholar 

  8. M.R.I. Faruque, M.J. Hossain, S.S. Islam, M.F. Bin, M.T. Jamlos, Islam, Appl. Phys. A Mater. Sci. Process. 123, 310 (2017)

    Article  ADS  Google Scholar 

  9. L. Wang, C.D. Hu, X.X. Wu, Z.Z. Xia, W.J. Wen, Appl. Phys. A Mater. Sci. Process. 123, 651 (2017)

    Article  ADS  Google Scholar 

  10. T. Shaw, D. Mitra, Appl. Phys. A Mater. Sci. Process. 124, 348 (2018)

    Article  Google Scholar 

  11. M. Grande, G.V. Bianco, M.A. Vincenti, D. de Ceglia, P. Capezzuto, V. Petruzzelli, M. Scalora, G. Bruno, A. D’Orazio, Opt. Express 24, 22788–22795 (2016)

    Article  ADS  Google Scholar 

  12. K. Takizawa, O. Hashimoto, IEEE Trans. Microwave Theory Tech. 47, 1137–1141 (1999)

    Article  ADS  Google Scholar 

  13. Y. Okano, S. Ogino, K. Ishikawa, IEEE Trans. Microwave Theory Tech. 60, 2456–2464 (2012)

    Article  ADS  Google Scholar 

  14. H. Kurihara, Y. Hirai, K. Takizawa, T. Iwata, O. Hashimoto, IEICE Trans. Electron. E88c, 2350–2357 (2005)

    Article  ADS  Google Scholar 

  15. Y. Zhang, J.P. Duan, B.Z. Zhang, W.D. Zhang, W.J. Wang, J. Alloy. Compd. 705, 262–268 (2017)

    Article  Google Scholar 

  16. F. Yu, J. Wang, J. Wang, H. Ma, H. Du, Z. Xu, S. Qu, J. Appl. Phys. 119, 134104 (2016)

    Article  ADS  Google Scholar 

  17. L. Du, X. Du, L. Zhang, Q. An, W. Ma, H. Ran, H. Du, J. Eur. Ceram. Soc. 38, 2767–2773 (2018)

    Article  Google Scholar 

  18. T. Jang, H. Youn, Y.J. Shin, L.J. Guo, ACS Photonics 1, 279–284 (2014)

    Article  Google Scholar 

  19. C. Zhang, Q. Cheng, J. Yang, J. Zhao, T.J. Cui, Appl. Phys. Lett. 110, 143511 (2017)

    Article  ADS  Google Scholar 

  20. D.W. Hu, J. Cao, W. Li, C. Zhang, T.L. Wu, Q.F. Li, Z.H. Chen, Y.L. Wang, J.G. Guan, Adv. Opt. Mater. 5, 1700109 (2017)

    Article  Google Scholar 

  21. W.W. Li, H. Jin, Z.H. Zeng, L.P. Zhang, H. Zhang, Z. Zhang, Carbon 121, 544–551 (2017)

    Article  Google Scholar 

  22. L.L. Wang, H.F. Zhang, X.K. Kong, B.R. Bian, 2016 progress in electromagnetics research symposium (Piers), pp. 1919–1922 (2016)

  23. S.F. Lai, Y.H. Wu, J.J. Wang, W. Wu, W.H. Gu, Opt. Mater. Express 8, 1585–1592 (2018)

    Article  ADS  Google Scholar 

  24. H. Sheokand, S. Ghosh, G. Singh, M. Saikia, K.V. Srivastava, J. Ramkumar, S.A. Ramakrishna, J. Appl. Phys. 122, 105105 (2017)

    Article  ADS  Google Scholar 

  25. C.Y. Chen, M.X. Jing, Z.C. Pi, S.W. Zhu, X.Q. Shen, Nanoscale Res. Lett. 10, 315 (2015)

    Article  ADS  Google Scholar 

  26. S. Mallakpour, M. Javadpour, Polym. Compos. 38, 1800–1809 (2017)

    Article  Google Scholar 

  27. K.Y. Park, S.E. Lee, C.G. Kim, J.H. Han, Compos. Sci. Technol. 66, 576–584 (2006)

    Article  Google Scholar 

  28. T. Wang, P. Wang, Y. Wang, L. Qiao, Mater. Design 95, 486–489 (2016)

    Article  Google Scholar 

  29. Q. Zhou, X.W. Yin, F. Ye, R. Mo, X.F. Liu, X.M. Fan, L.F. Cheng, L.T. Zhang, J. Am. Ceram. Soc. 101, 5552–5563 (2018)

    Article  Google Scholar 

  30. H. Liu, H. Cheng, H. Tian, Mater. Sci. Eng. B 179, 17–24 (2014)

    Article  Google Scholar 

  31. F. Costa, A. Monorchio, G. Manara, 2009 IEEE antennas and propagation society international symposium and USNC/URSI national radio science meeting, pp. 781–784 (2009)

  32. K. Chen, L. Cui, Y.J. Feng, J.M. Zhao, T. Jiang, B. Zhu, Opt. Express 25, 5571–5579 (2017)

    Article  ADS  Google Scholar 

  33. K.M. Gupta, N. Gupta, Optical Properties of Materials, and Materials for Opto-Electronic Devices (Wiley, New York, 2015)

    Book  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China [grant numbers 51725205, 51602258, 51521061 and 51332004] and the 111 project [grant number B08040].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaowei Yin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Yin, X., Ye, F. et al. Optically transparent and flexible broadband microwave metamaterial absorber with sandwich structure. Appl. Phys. A 125, 131 (2019). https://doi.org/10.1007/s00339-019-2430-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2430-2

Keywords

Navigation