Skip to main content
Log in

Broadband and wideangle absorption of transparent conformal metamaterial

  • Original Research
  • Published:
Advanced Composites and Hybrid Materials Aims and scope Submit manuscript

Abstract

A transparent metamaterial with wide-angle absorption and polarization-insensitive broadband microwave absorbers has been designed. Indium tin oxide (ITO) resistive film is used to construct a composite resonance structure to induce high resistance loss and expand the resonance bandwidth, and by adjusting the position of the array ITO resonator in the transparent medium, more than 90% absorption is achieved in the frequency range of 7–34.6 GHz and the wide angle range from 0° to 60°. Meanwhile, by employing flexible transparent substrates, including polydimethylsiloxane (PDMS) and PET support substrate, good optical transmittance is obtained. The current distribution on the surface of the conductive ITO layer and the absorption rate under different incident angles were simulated, and the analysis verified the absorption mechanism of the absorber and the stability of the wide incident angle. The proposed metamaterial absorber with high absorptivity and polarization insensitivity holds great promise in applications for flexible stealth device.

Graphical abstract

Theoretical and simulation analysis of Broadband and wideangle absorption of transparent conformal metamaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tao H, Landy NI, Bingham CM, Zhang X, Averitt RD, Padilla WJ (2008) A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt Express 16(10):7181–7188. https://doi.org/10.1364/OE.16.007181

    Article  Google Scholar 

  2. Tung Bui S, Khuyen Bui X, Kim YJ, Hwang JS, Lam Vu D, Chen L-Y, Lee Y (2020) Manipulation of the near-field coupling in metamaterial for multi-band absorber. Waves Random Complex Media. https://doi.org/10.1080/17455030.2020.1738591

    Article  Google Scholar 

  3. Liu J, Fan L (2020) Development of a tunable terahertz absorber based on temperature control. Microw Opt Technol Lett 62(4):1681–1685. https://doi.org/10.1002/mop.32211

    Article  Google Scholar 

  4. Zhang Y, Wu P, Zhou Z, Chen X, Yi Z, Zhu J, Zhang T, Jile H (2020) Study on temperature adjustable terahertz metamaterial absorber based on vanadium dioxide. IEEE Access 8:85154–85161. https://doi.org/10.1109/ACCESS.2020.2992700

    Article  Google Scholar 

  5. Katsumata S, Tanaka T, Kubo W (2021) Metamaterial perfect absorber simulations for intensifying the thermal gradient across a thermoelectric device. Opt Express 29(11):16396–16405. https://doi.org/10.1364/OE.418814

    Article  CAS  Google Scholar 

  6. Jiang J, Fang R, Han J, Wu F, Yang Y (2020) Optical switching of terahertz wave based on asymmetric metamaterial structures. Ferroelectrics 568(1):79–84. https://doi.org/10.1080/00150193.2020.1760584

    Article  CAS  Google Scholar 

  7. Agarwal S, Prajapati YK (2020) Metamaterial based sucrose detection sensor using transmission spectroscopy. Optik 205. https://doi.org/10.1016/j.ijleo.2020.164276

  8. Ma K-J, Tan T, Liu F-R, Zhao L-C, Liao W-H, Zhang W-M (2020) Acoustic energy harvesting enhanced by locally resonant metamaterials. Smart Mater Struct 29(7). https://doi.org/10.1063/1.4954987

  9. Duan X, Chen X, Zhou Y, Zhou L, Hao S (2018) Wideband metamaterial electromagnetic energy harvester with high capture efficiency and wide incident angle. IEEE Antennas Wirel Propag Lett 17(9):1617–1621. https://doi.org/10.1109/LAWP.2018.2858195

    Article  Google Scholar 

  10. Li X, Pizza C, Schulz SA, Ciattoni A, Di Falco A (2019) Conformable optical coatings with epsilon near zero response. Apl Photonics 4(5). https://doi.org/10.1063/1.5098038

  11. Wu N, Zhao B, Liu J, Li Y, Chen Y, Chen L, Wang M, Guo Z (2021). MOF-derived porous hollow Ni/C composites with optimized impedance matching as lightweight microwave absorption materials. Adv Compos Mater 4(3):707–15.https://doi.org/10.1007/s42114-021-00307-z

  12. Tao H, Gibert J (2020) Multifunctional mechanical metamaterials with embedded triboelectric nanogenerators. Adv Funct Mater 30(23). https://doi.org/10.1002/adfm.202001720

  13. Vaity P, Sagar R, Dharmadhikari JA, Dharmadhikari AK, Gupta SD, Achanta VG (2021) Broadband negative group velocity dispersion in all-dielectric metamaterial and its role in supercontinuum generation. Opt Lett 46(2):182–85. https://doi.org/10.1364/ol.410971

  14. Bui S, Bui Xuan TK, Pham The L, Nguyen Thanh T, Do Hung M, Vu Dinh L (2020) Polarization-insensitive electromagnetically-induced transparency in planar metamaterial based on coupling of ring and zigzag spiral resonators. Mod Phys Lett B 34(10). https://doi.org/10.1142/S0217984920500931

  15. Li R, Kong XK, Liu SB, Liu ZM, Li YM (2019) Planar metamaterial analogue of electromagnetically induced transparency for a miniature refractive index sensor. Phys Lett A 383(32). https://doi.org/10.1016/j.physleta.2019.125947

  16. Liu T, Wang H, Liu Y, Xiao L, Yi Z, Zhou C, Xiao S (2018) Active manipulation of electromagnetically induced transparency in a terahertz hybrid metamaterial. Opt Commun 426:629–634. https://doi.org/10.1016/j.optcom.2018.06.018

    Article  CAS  Google Scholar 

  17. Ma Q, Zhan Y, Hong W (2019) Tunable metamaterial with gold and graphene split-ring resonators and plasmonically induced transparency. Nanomaterials 9(1). https://doi.org/10.3390/nano9010007

  18. Nakanishi T, Kitano M (2018) Storage and retrieval of electromagnetic waves using electromagnetically induced transparency in a nonlinear metamaterial. Appl Phys Lett 112(20). https://doi.org/10.1063/1.5035442

  19. Shen Z, Xiang T, Wu J, Yu Z, Yang H (2019) Tunable and polarization insensitive electromagnetically induced transparency using planar metamaterial. J Magn Magn Mater 476:69–74. https://doi.org/10.1016/j.jmmm.2018.12.069

    Article  CAS  Google Scholar 

  20. Wang J, Tian H, Wang G, Li S, Guo W, Xing J, Wang Y, Li L, Zhou Z (2021) Mechanical control of terahertz plasmon-induced transparency in single/double-layer stretchable metamaterial. J Phys D Appl Phys 54(3). https://doi.org/10.1088/1361-6463/abbc99

  21. Qi G, Liu Y, Chen L, Xie P, Pan D, Shi Z, Quan B, Zhong Y, Liu C, Fan R, Guo Z (2021). Lightweight Fe3C@Fe/C nanocomposites derived from wasted cornstalks with high-efficiency microwave absorption and ultrathin thickness. Adv Compos Mater 4(4):1226–38.https://doi.org/10.1007/s42114-021-00368-0

  22. Wang G, Zhang X, Wei X (2020) Tunable plasmon-induced transparency through bright mode resonator in a metal-graphene terahertz metamaterial. Appl Sci 10(16). https://doi.org/10.3390/app10165550

  23. Ling Y, Huang L, Hong W, Liu T, Luan J, Liu W, Lai J, Li H (2018) Polarization-controlled dynamically switchable plasmon-induced transparency in plasmonic metamaterial. Nanoscale 10(41):19517–19523. https://doi.org/10.1039/C8NR03564D

    Article  CAS  Google Scholar 

  24. Xiao J, Xiao R, Zhang R, Shen Z, Hu W, Wang L, Lu Y (2020) Tunable terahertz absorber based on transparent and flexible metamaterial. Chin Opt Lett 18(9). https://doi.org/10.3788/COL202018.092403

  25. Yang Z, Sun X, Tian J, Li H, Yu H, Wang H, Zhou M, Huang Q (2020) Broadband and polarization-insensitive microwave absorbing composite material with transmission performance based on indium tin oxide metamaterial. Journal of Materials Science-Materials in Electronics 31(16):13838–13844. https://doi.org/10.1007/s10854-020-03943-1

    Article  CAS  Google Scholar 

  26. Wu H, Zhong Y, Tang Y, Huang Y, Liu G, Sun W, Xie P, Pan D, Liu C, Guo Z (2021) Precise regulation of weakly negative permittivity in CaCu3Ti4O12 metacomposites by synergistic effects of carbon nanotubes and grapheme. Adv Compos Mater.https://doi.org/10.1007/s42114-021-00378-y

  27. Biao Z, Luyang L, Zhongyi B, Xiaoqin G, Rui Z, Qinglong J, Zhanhu G (2021) Poly(vinylidene fluoride)/Cu@Ni anchored reduced-graphene oxide composite films with folding movement to boost microwave absorption properties. Eng Sci 14:79–86. https://doi.org/10.30919/esee8c488

  28. Chaudhary K, Singh G, Ramkumar J, Ramakrishna SA, Srivastava KV, Ramamurthy PC (2020) Optically transparent protective coating for ITO-coated PET-based microwave metamaterial absorbers. Ieee Transactions on Components Packaging and Manufacturing Technology 10(3):378–388. https://doi.org/10.1109/TCPMT.2020.2972911

    Article  CAS  Google Scholar 

  29. Elakkiya A, Radha S, Sreeja BS, Manikandan E (2020) Terahertz dual-band/broadband metamaterial absorber enabled by SiO2: polyimide and PET dielectric substrates with absorption characteristics. Bull Mater Sci 43(1). https://doi.org/10.1007/s12034-020-02183-7

  30. Nannan W, Wenjing D, Qian H, Sravanthi V, Qinglong J (2021)Recent development in fabrication of Co nanostructures and their carbon nanocomposites for electromagnetic wave absorption. Eng Sci 13:11–23. https://doi.org/10.30919/es8d1149

  31. Deng G, Lv K, Sun H, Yang J, Yin Z, Chi B, Li X (2021) An ultra-broadband and optically transparent metamaterial absorber based on multilayer indium-tin-oxide structure. J Phys D J Phys 54(16). https://doi.org/10.1088/1361-6463/abdb6a

  32. Deng R, Li M, Muneer B, Zhu Q, Shi Z, Song L, Zhang T (2018) Theoretical analysis and design of ultrathin broadband optically transparent microwave metamaterial absorbers. Materials 11(1). https://doi.org/10.3390/ma11010107

  33. Manh Cuong T, Dinh Hai L, Van Hai P, Hoang Tung D, Dac Tuyen L, Hong Luu D, Dinh Lam V (2018) Controlled defect based ultra broadband full-sized metamaterial absorber. Sci Rep 8. https://doi.org/10.1038/s41598-018-27920-1

  34. Gao X, Wu X, Qiu J (2018) High electromagnetic waves absorbing performance of a multilayer-like structure absorber containing activated carbon hollow porous fibers-carbon nanotubes and Fe3O4 nanoparticles. Adv Electron Mater 4(5). https://doi.org/10.1002/aelm.201700565

  35. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314(5801):977–80. https://doi.org/10.1126/science.1133628

Download references

Funding

This work was supported by the National Key R & D Program of China (Project No. 2021YFE0104700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mo, B., Wang, C. Broadband and wideangle absorption of transparent conformal metamaterial. Adv Compos Hybrid Mater 5, 383–389 (2022). https://doi.org/10.1007/s42114-021-00410-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42114-021-00410-1

Keywords

Navigation