Skip to main content
Log in

Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

ZnO films prepared by sol–gel method and the ultraviolet detectors based on this material have been investigated in this paper. X-ray diffraction (XRD) patterns showed ZnO films present hexagonal wurtzite structure with a preferential orientation of (002) plane, and the crystallite size of films gradually increased from 44.3 to 54.8 nm as the annealing temperature increased from 400 to 600 °C. Ultraviolet–visible (UV–Vis) spectra indicated that the optical band gap decreases gradually with the increase of annealing temperature, and the minimum band gap is 3.06 eV at 600 °C. Photoluminescence (PL) spectra revealed that increasing annealing temperature can significantly reduce the defects and improve the crystallinity. Finally, gold (Au) coplanar interdigital electrodes were deposited on ZnO film surface and used to fabricate the ultraviolet photodetectors. The response performance of the devices improved as the annealing temperature of ZnO films increased, and the fastest response speed with a rise time of 4.172 s and a fall time of 11.012 s was obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. D. Barreca, D. Bekermann, E. Comini, Sensor. Actuat. B Chem. 149, 1–7 (2010)

    Article  Google Scholar 

  2. S.G. Zhang, X.W. Zhang, J.X. Wang, J.B. You, Phys. Status. Solidi R. 5, 74–76 (2010)

    Article  Google Scholar 

  3. Q. Zhang, C.S. Dandeneau, X. Zhou, G. Cao, Adv. Mater. 21, 4087–4108 (2010)

    Article  Google Scholar 

  4. D.H. Yoo, T.V. Cuong, V.H. Luan, N.T. Khoa, E.J. Kim, J. Phys. Chem. C 116, 7180–7184 (2012)

    Article  Google Scholar 

  5. T. Wang, Y. Liu, Appl. Surf. Sci. 257, 2341–2345 (2011)

    Article  ADS  Google Scholar 

  6. Z. Wang, H. Zhang, L. Zhang, J. Yuan, S. Yan, Nanotechnology 14, 11–15 (2002)

    Article  ADS  Google Scholar 

  7. Y. Liu, C.R. Gorla, S. Liang, N. Emanetoglu, Y. Lu, J. Electron. Mater. 29, 69–74 (2000)

    Article  ADS  Google Scholar 

  8. B.A. Albiss, M. Alakhras, I. Obaidat, Int. J. Environ. Anal. Chem. 95, 339–348 (2015)

    Article  Google Scholar 

  9. J. Gao, W.J. Liu, S.J. Ding, H.L. Lu, AIP Adv. 8, 015015 (2018)

    Article  ADS  Google Scholar 

  10. J. Yu, C.X. Shan, X.M. Huang, X.W. Zhang, S.P. Wang, D.Z. Shen, J. Phys. D 46, 305105 (2013)

    Article  ADS  Google Scholar 

  11. S.K. Shaikh, S.I. Inamdar, V.V. Ganbavle, J. Alloy. Compd. 664, 242–249 (2016)

    Article  Google Scholar 

  12. C. Portesi, L. Lolli, E. Taralli, Eur. Phys. J. Plus. 130, 45 (2015)

    Article  Google Scholar 

  13. F. Yi, Q. Liao, X. Yan, Z. Bai, Z. Wang, Phys. E. 61, 180–184 (2014)

    Article  Google Scholar 

  14. S. Lany, A. Zunger, Phys. Rev. B 72, 035215 (2005)

    Article  ADS  Google Scholar 

  15. M. Kim, J.Y. Leem, J.S. Son, J. Korean. Phys. Soc. 68, 705–709 (2016)

    Article  ADS  Google Scholar 

  16. R.J. Nelson, Appl. Phys. Lett. 31, 351–353 (1977)

    Article  ADS  Google Scholar 

  17. H. Zhu, J. Iqbal, H. Xu, J. Chem. Phys. 129, 124713 (2008)

    Article  ADS  Google Scholar 

  18. P.F. Carcia, R.S. McLean, M.H. Reilly, Appl. Phys. Lett. 82, 1117–1119 (2003)

    Article  ADS  Google Scholar 

  19. K. Vanheusden, C.H. Seager, W.L. Warren, J. Lumin. 75, 11–16 (1997)

    Article  Google Scholar 

  20. X. Liu, X. Wu, H. Cao, J. Appl. Phys. 95, 3141–3147 (2004)

    Article  ADS  Google Scholar 

  21. S. Fujihara, C. Sasaki, J. Eur. Ceram. Soc. 21, 2109–2112 (2001)

    Article  Google Scholar 

  22. H.I. Abdulgafour, Z. Hassan, N.M. Ahmed, F.K. Yam, J. Appl. Phys. 112, 074510 (2012)

    Article  ADS  Google Scholar 

  23. D. Basak, G. Amin, B. Mallik, G.K. Paul, S.K. Sen, J. Cryst. Growth 256, 73–77 (2003)

    Article  ADS  Google Scholar 

  24. L.P. Peng, L. Fang, X.F. Yang, Y.J. Li, J. Alloy. Compd. 484, 575–579 (2009)

    Article  Google Scholar 

  25. P. Gu, X.H. Zhu, J.T. Li, H.H. Wu, Appl. Phys. A Mater. 124, 550 (2018)

    Article  Google Scholar 

  26. B. Subramanian, M. Jayachandran, J. Appl. Electrochem. 37, 1069 (2007)

    Article  Google Scholar 

  27. S.Y. Kuo, W.C. Chen, F.I. Lai, C.P. Cheng, J. Cryst. Growth 287, 78–84 (2006)

    Article  ADS  Google Scholar 

  28. J.G. Lv, W.B. Gong, K. Huang, Superlattice. Microst. 50, 98–106 (2011)

    Article  ADS  Google Scholar 

  29. S.S. Tneh, Z. Hassan, K.G. Saw, F.K. Yam, H.A. Hassan, Phys. B 405, 2045–2048 (2010)

    Article  ADS  Google Scholar 

  30. P. Gu, X.H. Zhu, J.T. Li, H.H. Wu, J. Mater. Sci Mater. Electron. 29, 14635–14642 (2018)

    Article  Google Scholar 

  31. N. Satoh, T. Nakashima, K. Kamikura, Nat. Nanotechnol. 3, 106–111 (2008)

    Article  ADS  Google Scholar 

  32. M.S. Wang, E.J. Kim, J.S. Chung, Phys. Stat. Sol. (a) 203, 2418–2425 (2006)

    Article  ADS  Google Scholar 

  33. A.K. Zak, M.E. Abrishami, R. Yousefi, Ceram. Int. 37, 393–398 (2011)

    Article  Google Scholar 

  34. R. Rajalakshmi, S. Angappane, Mater. Sci. Eng. B Adv. 178, 1068–1075 (2013)

    Article  Google Scholar 

  35. H.B. Ruan, L. Fang, D.C. Li, M. Saleem, G.P. Qin, Thin Solid Films 519, 5078–5081 (2011)

    Article  ADS  Google Scholar 

  36. X.P. Peng, J.Z. Xu, H. Zang, J. Lumin. 128, 297–300 (2008)

    Article  Google Scholar 

  37. L.F. Hu, M. Chen, W.Z. Shan, T.R. Zhan, Adv. Mater. 24, 5872–5877 (2012)

    Article  Google Scholar 

  38. M.S. Wang, E.J. Kim, Phys. Stat. Sol. 203, 2418–2425 (2006)

    Article  ADS  Google Scholar 

  39. S. Mokhtari, S. Safa, J. Electron. Mater. 46, 4250–4255 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Science Foundation of China (NSFC) No. 11675029 and Program of Science and Technology Department of Sichuan Province No. 2018JY0453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dingyu Yang.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, P., Zhu, X. & Yang, D. Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films. Appl. Phys. A 125, 50 (2019). https://doi.org/10.1007/s00339-018-2361-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2361-3

Navigation