Skip to main content
Log in

Exploring the possibility of the zigzag WS2 nanoribbons as anode materials for sodium-ion batteries

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Developing highly efficient anode materials for Na batteries with large capacity and also high stability and mobility is a great desire. In this paper, using the first-principle calculations, we explored the feasibility of using zigzag WS2 nanoribbon as rechargeable sodium-ion battery anode electrode. We also have investigated the electronic structure and charge transfer properties. The calculated voltage was suitable for the anode application. The theoretical specific capacities can reach up to 315.46 mAh g−1, compared to the values of 372 mAh g−1 for graphite and 273.52 mAh g−1 for WS2 nanolayer. The activation barrier of WS2 nanoribbon is only 0.12 eV, higher than the 0.07 eV of the WS2 nanolayer. Our calculations suggest that zigzag WS2 nanoribbons can serve as a promising high-capacity Na ion battery anode and provide proper insight into exploring high-capacity 2D nanoribbons for potential battery applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. http://www.quantum-espresso.org/.

References

  1. T.S. Sahu, S. Mitra, Sci. Rep. 5, 12571 (2015)

    Article  ADS  Google Scholar 

  2. K. N.Yabuuchi, M. Kubota, S. Dahbi, Komaba, Chem. Rev. 114, 11636 (2014)

    Article  Google Scholar 

  3. D. Kundu, E. Talie, V. Duffort, L.F. Nazar, Angew.Chem.Int. Ed. 54, 3431 (2015)

    Article  Google Scholar 

  4. B.L. Ellis, L.F. Nazar, Curr. Opin. Solid State Mater. Sci. 16, 168 (2012)

    Article  ADS  Google Scholar 

  5. C. Xia, R. Black, R. Fernandes, B. Adams, L.F. Nazar, Nat. Chem. 7, 496 (2015)

    Article  Google Scholar 

  6. H. Yadegari, M.N. Banis, B. Xiao, Q. Sun, X. Li, A. Lushington, B. Wang, R. Li, T.K. Sham, X. Cui, X. Sun, Chem. Mater 27, 3040 (2015)

    Article  Google Scholar 

  7. Y. Liu, F. Fan, J. Wang, Y. Liu, H. Chen, K.L. Jungjohann, Y. Xu, Y. Zhu, D. Bigio, T. Zhu, C. Wang, Nano Lett. 14, 3445 (2014)

    Article  ADS  Google Scholar 

  8. A.D. Stevens, R.J. Dahn, J. Electrochem. Soc. 147, 1271 (2000)

    Article  Google Scholar 

  9. R. Alcantara, P. Lavela, G.F. Ortiz, J.L. Tirado, Electrochem. Solid State Lett. 8, 222 (2005)

    Article  Google Scholar 

  10. L. Fu et al., Nanoscale 6, 1384 (2014)

    Article  ADS  Google Scholar 

  11. Y. Maeda, S. Harada, Synth. Met. 31, 389 (1989)

    Article  Google Scholar 

  12. A. Rudola, K. Saravanan, C.W. Mason, P. Balaya, J. Mater. Chem. A 1, 2653 (2013)

    Article  Google Scholar 

  13. Y. Wen, et al. Nat. Commun 5, 4033 (2014)

    Article  Google Scholar 

  14. M.D. Slater, D. Kim, E. Lee, C.S. Johnson, Adv. Funct. Mater 23, 947 (2013)

    Article  Google Scholar 

  15. N. Yabuuchi, K. Kubota, M. Dahbi, S. Komaba, Chem. Rev 114, 11636 (2014)

    Article  Google Scholar 

  16. V. Shukla, R.B. Araujo, N.K. Jena, R. Ahuja, Phys. Chem. Chem. Phys. 20, 22008 (2018)

    Article  Google Scholar 

  17. V. Shukla, R.B. Araujo, N.K. Jena, R. Ahuja, Nano Energy 41,251 (2017)

    Article  Google Scholar 

  18. J. Zhu, U. Schwingenschlögl, 2D Mater. 3, 035012 (2016)

    Article  Google Scholar 

  19. A. Sannyal, Z. Zhang, X. Gao, J. Jang, Comput. Mater. Sci. 154, 204 (2018)

    Article  Google Scholar 

  20. V.V. Kulish, O.I. Malyi, C. Persson, P. Wu, Phys. Chem. Chem. Phys. 17, 13921 (2015)

    Article  Google Scholar 

  21. Y. Zhang, Z.-F. Wu, P.-F. Gao, S. Zhang, Y.-H. Wen, ACS Appl. Mater. Interfaces 8(34), 22175 (2016)

    Article  Google Scholar 

  22. G. Jeong, Y.-U. Kim, H. Kim, Y.-J. Kim, H.-J. Sohn, Energy Environ. Sci. 4, 1986 (2011)

    Article  Google Scholar 

  23. W. Li, Y. Yang, G. Zhang, Y.-W. Zhang, Nano Lett. 15(3), 1691 (2015)

    Article  ADS  Google Scholar 

  24. M.-Q. Zhao, M. Torelli, C.E. Ren, M. Ghidiu, Z. Ling, B. Anasori, M.W. Barsoum, Y. Gogotsi, Nano Energy 30, 603 (2016)

    Article  Google Scholar 

  25. G. Chen, Y. Bai, H. Li, Y. Li, Z. Wang, Q. Ni, L. Liu, F. Wu, Y. Yao, C. Wu, ACS Appl. Mater. Interfaces 9, 6666 (2017)

    Article  Google Scholar 

  26. N.K. Jena, R.B. Araujo, V. Shukla, R. Ahuja, ACS Appl. Mater. Interfaces 9(19), 16148 (2017)

    Article  Google Scholar 

  27. H. Hwang, H. Kim, J. Cho, Nano Lett. 11, 4826 (2011)

    Article  ADS  Google Scholar 

  28. J.T. Q.Li, E.C. Newberg, J.C. Walter, R.M. Hemminger, Penner, Nano Lett. 4, 277 (2004)

    Article  ADS  Google Scholar 

  29. G. Kresse, J. Jouber, Phys. Rev. B 59, 1758 (1999)

    Article  ADS  Google Scholar 

  30. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  ADS  Google Scholar 

  31. Y. Li, Z. Zhou, S. Zhang, Z. Chen, J. Am.Chem. Soc. 130, 16739 (2008)

    Article  Google Scholar 

  32. Z. Wang, H. Li, Z. Liu, Z. Shi, J. Lu, K. Suenaga, S.K. Joung, T. Okazaki, Z. Gu, J. Zhou, Z. Gao, G. Li, S. Sanvito, E. Wang, S. Iijima, J. Am. Chem. Soc. 132, 13840 (2010)

    Article  Google Scholar 

  33. Y. Ma, Y. Dai, M. Guo, C. Niu, J. Lu, B. Huang, Phys. Chem. Chem. Phys. 13, 15546 (2011)

    Article  Google Scholar 

  34. B. Khoshnevisan, M. Mohammadi, Appl. Phys. A 112, 311 (2013)

    Article  ADS  Google Scholar 

  35. C. Uthaisar, V. Barone, J.E. Peralta, J. Appl. Phys. 106, 113715 (2009)

    Article  ADS  Google Scholar 

  36. S. Yang, D. Li, T. Zhang, Z. Tao, J. Chen, J. Phys. Chem. C 116, 1307 (2012)

    Article  Google Scholar 

  37. Y. Li, D. Wu, Z. Zhou, C.R. Cabrera, Z. Chen, J. Phys. Chem. Lett. 3, 2221 (2012)

    Article  Google Scholar 

  38. A. Kuc, N. Zibouche, T. Heine, Phys. Rev. B 83, 245213 (2011)

    Article  ADS  Google Scholar 

  39. H. Zhang, X. Li, L. Liu, J. Appl. Phys. 114, 093710 (2013)

    Article  ADS  Google Scholar 

  40. P. Senguttuvan, G. Rousse, V. Seznec, J.-M. Tarascon, M. Rosa Palacin, Chem. Mater. 23, 4109 (2011)

    Article  Google Scholar 

  41. H. Xiong, M.D. Slater, M. Balasubramanian, C.S. Johnson, T. Rajh, J. Phys. Chem. Lett. 2, 2560 (2011)

    Article  Google Scholar 

  42. R. Alcantara, J.M. Jimenez-Mateos, P. Lavela, J.L. Tirado, Electrochem. Commun. 3, 639 (2001)

    Article  Google Scholar 

  43. D. Barayang Putungan, S.-H. Lin, J.-L. Kuo, ACS Appl. Mater. Interfaces 8(29) 18754 (2016)

    Article  Google Scholar 

  44. P. Liang, Y. Cao, B. Tai, L. Zhang, H. Shu, F. Li, D. Chao, X. Du, J. Alloy. Compd. 704, 152 (2017)

    Article  Google Scholar 

  45. J. Park, J.-S. Kim, J.-W. Park, T.-H. Nam, K.-W. Kim, J.-H. Ahn, G. Wang, H.-J. Ahn, Electrochim. Acta 92, 427 (2013)

    Article  Google Scholar 

  46. S.-K. Park, J. Lee, S. Bong, B. Jang, K.-D. Seong, Y. Piao, ACS Appl. Mater. Interfaces 8(30), 19456 (2016)

    Article  Google Scholar 

  47. Y.-X. Wang, S.-L. Chou, D. Wexler, H.-K. Liu, S.-X. Dou, Chem. Eur. J. 20(31), 9607 (2014)

    Article  Google Scholar 

  48. L. David, R. Bhandavat, G. Singh, ACS Nano 8(2), 1759 (2014)

    Article  Google Scholar 

  49. G. Henkelman, B.P. Uberuaga, H. Jonsson, J. Chem. Phys. 113, 9901 (2000)

    Article  ADS  Google Scholar 

  50. C. Ling, F. Mizuno, Phys. Chem. Chem. Phys. 14(22), 10419 (2014) 16)

    Article  Google Scholar 

  51. D. Er, J. Li, M. Naguib, Y. Gogotsi, V.B. Shenoy, ACS Appl. Mater. Interfaces 6, 11173 (2014)

    Article  Google Scholar 

  52. M. Mortazavi, C. Wang, J.K. Deng, V.B. Shenoy, N.V. Medhekar, J. Power Sources 268, 279 (2014)

    Article  ADS  Google Scholar 

  53. D.B. Putungan, S.-H. Lin, J.-L. Kuo, ACS Appl. Mater. Interfaces 8, 18754 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge Sultan Qaboos University support through the internal Grant IG/ENG/PCED/18/01.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to G. Reza Vakili-Nezhaad or Mahnaz Mohammadi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 483 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakili-Nezhaad, G.R., Al-Wadhahi, M., Gujrathi, A.M. et al. Exploring the possibility of the zigzag WS2 nanoribbons as anode materials for sodium-ion batteries. Appl. Phys. A 125, 47 (2019). https://doi.org/10.1007/s00339-018-2336-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2336-4

Navigation