Skip to main content
Log in

Chemical warfare agents’ degradation on Fe–Cu codoped TiO2 nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Metal ion-doped titanium dioxide (TiO2) nanoparticles have been proved to be one of the most efficient decontaminating catalysts towards chemical warfare agents (CWAs). Nowadays, most of the researchers are paying their attention to the study of single metal ion-doped TiO2 nanoparticles, while a few reports are focused on the photocatalytic degradation performance of two or more kinds of metal ions codoped TiO2 nanoparticles. In this work, Fe–Cu codoped TiO2 nanoparticles have been prepared by the homogeneous precipitation method. 2-Chloroethyl ethyl sulfide (2-CEES), as a model, has been used to investigate its photocatalytic degradation efficiency on the prepared catalysts. The results showed that 10 wt% Fe2–Cu1 codoped TiO2 nanoparticles have an obvious improved photocatalytic activity compared with the single Fe/Cu-doped TiO2 nanoparticles, which are majorly attributed to its physical structure properties through HRTEM, XRD, UV–Vis, BET and BJH characteristics. An appropriate amount of Fe–Cu dopant does not change the crystal structure of TiO2 nanoparticles, but improves the dispersion, reduces the grain size, increases the surface area and improves the light utilization. 10% Fe2–Cu1 codoped TiO2 nanoparticles were dispersed into HFE-458 (HCF2CF2CH2OCF2CF2H), and the disinfection efficiency of 2-chloroethyl ethyl sulfide (HD simulation, 2-CEES), dimethyl methanephosphonate (GD simulation, DMMP) and malathion (VX simulation) were studied under the simulated sunlight irradiation. After reacting for 60 min, the degradation efficiency of 2-CEES, DMMP and malathion is 99.73%, 99.20% and 94.27%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. S. Chauhan, S. Chauhan, R. D’Cruz, S. Faruqi, K.K. Singh, S. Varma, M. Singh, V. Karthik, Environ. Toxicol. Pharmacol. 26, 113–122 (2008)

    Article  Google Scholar 

  2. C. Solazzo, D. Erhardt, F. Marte, D. Von Endt, C. Tumosa, Appl. Phys. A 79, 247–252 (2004)

    Article  ADS  Google Scholar 

  3. K. Kim, O.G. Tsay, D.A. Atwood, D.G. Churchill, Chem. Rev. 111, 5345–5403 (2011)

    Article  Google Scholar 

  4. S.-W. Zhang, T.M. Swager, J. Am. Chem. Soc. 125, 3420–3421 (2003)

    Article  Google Scholar 

  5. Y.-C. Yang, J.A. Baker, J.R. Ward, Chem. Rev. 92, 1729–1743 (1992)

    Article  Google Scholar 

  6. A.B. Kanu, P.E. Haigh, H.H. Hill, Anal. Chim. Acta 553, 148–159 (2005)

    Article  Google Scholar 

  7. F. Wang, H.W. Gu, T.M. Swager, J. Am. Chem. Soc. 130, 5392–5393 (2008)

    Article  Google Scholar 

  8. B.-S. Joo, J.-S. Huh, D.-D. Lee, Sens. Actuator. B 121, 47–53 (2007)

    Article  Google Scholar 

  9. B.M. Smith, Chem. Soc. Rev. 37, 470–478 (2008)

    Article  Google Scholar 

  10. B. Singh, G.K. Prasad, K.S. Pandey, R.K. Danikhel, R. Vijayaraghavan, Def. Sci. J. 60, 428–441 (2010)

    Article  Google Scholar 

  11. D.A. Panayotov, J.R. Morris, Langmuir 25, 3652–3658 (2009)

    Article  Google Scholar 

  12. L.Y. Xiang, J. Ya, F.J. Hu, L.X. Li, Z.F. Liu, Appl. Phys. A 123, 160 (2017)

    Article  ADS  Google Scholar 

  13. M. Radecka, M. Rekas, A. Trenczek-Zajac, K. Zakrzewska, J. Power Sources 181, 46–55 (2008)

    Article  ADS  Google Scholar 

  14. L. Gu, J.Y. Wang, R. Qi, X.Y. Wang, P. Xu, X.J. Han, J. Mol. Catal. A: Chem. 357, 19–25 (2012)

    Article  Google Scholar 

  15. V. Stengl, S. Bakardjieva, J. Phys. Chem. C 114, 19308–19317 (2010)

    Article  Google Scholar 

  16. V. Stengl, T.M. Grygar, F. Oplustil, T. Nemec, J. Hazard. Mater. 192, 1491–1504 (2011)

    Article  Google Scholar 

  17. V. Stengl, J. Bludska, F. Oplustil, T. Nemec, Mater. Res. Bull. 46, 2050–2056 (2011)

    Article  Google Scholar 

  18. V. Stengl, F. Oplustil, T. Nemec, Photochem. Photobiol. 88, 265–276 (2012)

    Article  Google Scholar 

  19. Z. Shen, J.Y. Zhong, L.K. Chen, H. Zhen, Q. Min, Y. Cui, Y.Z. Zhao, J. Inorg. Mater. 31, 427–433 (2016)

    Article  Google Scholar 

  20. Z. Shen, J.Y. Zhong, H. Zheng, Enciron. Sci. Technol. 38, 14–20 (2015)

    ADS  Google Scholar 

  21. S. Zhong, J.-Y. Zhong, X.-Y. Han, L.-Y. Wang, Y. Cui, L.-K. Chen, Y.-C. Zheng, Chem. Eng. J. 302, 111–119 (2016)

    Article  Google Scholar 

  22. Z. Shen, J.-Y. Zhong, N.-N. Chai, X. He, H. Zang, X.-Y. Xu, P. Han, J.-Z. Zhang, Chem. Phys. Lett. 678, 146–152 (2017)

    Article  ADS  Google Scholar 

  23. H.F. Fei, Y.L. An, J.K. Feng, L.J. Ci, S.L. Xiong, RSC Adv. 6, 53560–53565 (2016)

    Article  Google Scholar 

  24. K. Thamaphat, P. Limsuwan, B. Ngotawornchai, Nat. Sci. 42, 357–361 (2008)

    Google Scholar 

  25. J.G. Yu, J.X. Low, W. Xiao, P. Zhou, M. Jaroniec, J. Am. Chem. Soc. 136, 8839–8842 (2014)

    Article  Google Scholar 

  26. M. Ksibi, S. Rossignol, J.-M. Tatibouët, C. Trapalis, Mater. Lett. 62, 4204–4206 (2008)

    Article  Google Scholar 

  27. W.J. Foo, C. Zhang, G.W. Ho, Nanoscale 5, 759–764 (2013)

    Article  ADS  Google Scholar 

  28. G. Schimanke, M. Martin, Solid State Ionics 136–137, 1235–1240 (2000)

    Article  Google Scholar 

  29. R. López, R. Gómez, M.E. Llanos, Cata. Today 148, 103–108 (2009)

    Article  Google Scholar 

  30. D. Li, H.S. Zhou, I. Honma, Nature 3, 65–72 (2004)

    Article  Google Scholar 

  31. A.L. Linsebigler, G.Q. Lu, J.T. Yates, J. Chem. Rev. 95, 735–758 (1995)

    Article  Google Scholar 

  32. R.M. Rioux, H. Song, J.D. Hoefelmeyer, P. Yang, G.A. Somorjai, J. Phys. Chem. B 109, 2192–2202 (2005)

    Article  Google Scholar 

  33. R. Kaiser, A. Kulczyk, D. Rich, R.J. Willey, J. Minicucci, B. MacIver, Ind. Eng. Chem. Res. 46, 6126–6132 (2007)

    Article  Google Scholar 

  34. J.S. Lee, K.H. You, C.B. Park, H. Photoactive, Adv. Mater. 24, 1084–1088 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Rearch Fund of the Chinese Academy of Inspection and Quarantine (2017JK007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Ci.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ci, Y., Wang, S., Zhang, X. et al. Chemical warfare agents’ degradation on Fe–Cu codoped TiO2 nanoparticles. Appl. Phys. A 124, 786 (2018). https://doi.org/10.1007/s00339-018-2209-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2209-x

Navigation