Skip to main content
Log in

Evolution of defects and their effect on photoluminescence and conducting properties of green-synthesized ZnS nanoparticles

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have grown ZnS (zinc sulfide) nanoparticles (NPs) by hydrothermal and microwave (MW) heating method and a comparative study on the physical properties was carried out. Zinc acetate dihydrate (ZAD) and thioacetamide (TA) were used as Zn and S precursors, respectively. X-ray diffraction (XRD) and selected area electron diffraction (SAED) pattern revealed the cubic structure for ZnS and nanocrystalline nature of the samples. The careful observation of the XRD patterns of the samples grown by hydrothermal and microwave heating method indicate that microwave-synthesized ZnS (ZnS–MW) samples were strained compared to those grown by conventional hydrothermal methods. Uniform sized smaller nanoparticles were formed during microwave irradiation in a much shorter time. UV–Vis absorption spectra indicated quantum confinement effect. The emission peaks in photoluminescence spectra indicate the presence of various point defects in the samples. In the microwave synthesized sample, nucleation and growth process of the ZnS crystallites are very quick, leading to the formation of defects. The dielectric studies of both types of the samples show a typical behavior of polycrystalline semiconducting material. Under the applied A.C. fields, the conduction phenomena provide sufficient evidence for the electronic hopping between localized sites. Lower values of activation energy obtained for both dipolar relaxation and DC conductivity in the case of microwave synthesized sample indicate the applicability of such materials in various switching applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.P. Alivisatos, Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933 (1996)

    Article  ADS  Google Scholar 

  2. X. Fang, T. Zhai, U.K. Gautam, L. Li, L. Wu, Y. Bando, D. Golberg, ZnS nanostructures: from synthesis to applications. Prog. Mater Sci. 56, 175 (2011)

    Article  Google Scholar 

  3. D.W. Synnott, M.K. Seery, S.J. Hinder, G. Michlits, S.C. Pillai, Anti-bacterial activity of indoor-light activated photocatalysts. Appl. Catal. B Environ. 130–131, 106 (2013)

    Article  Google Scholar 

  4. J. Souriau, Y. Dong, J. Penczek, H.G. Paris, C.J. Summers, Cathodoluminescent properties of coated SrGa 2 S4: Eu2+ and ZnS:Ag, Cl phosphors for field emission display applications. Mater. Sci. Eng. B 76, 165 (2000)

    Article  Google Scholar 

  5. I.O. Oladeji, L. Chow, Synthesis and processing of CdS/ZnS multilayer films for solar cell application. Thin Solid Films 474, 77 (2005)

    Article  ADS  Google Scholar 

  6. M. Koneswaran, R. Narayanaswamy, l-Cysteine-capped ZnS quantum dots based fluorescence sensor for Cu2+ ion. Sensors Actuators, B Chem. 139, 104 (2009)

    Article  Google Scholar 

  7. Z. Li, J. Wang, X. Xu, X. Ye, The evolution of optical properties during hydrothermal coarsening of ZnS nanoparticles. Mater. Lett. 62, 3862 (2008)

    Article  Google Scholar 

  8. C. Ramamoorthy, V. Rajendran, Formation of solid and hollow sphere ZnS nanoparticles by hydrothermal process and their structural, optical and photocatalytic activity. Appl. Phys. A 124, 500 (2018)

    Article  ADS  Google Scholar 

  9. N.I. Kovtyukhova, E.V. Buzaneva, C.C. Waraksa, T.E. Mallouk, Ultrathin nanoparticle ZnS and ZnS: Mn films : surface sol–gel synthesis, morphology, photophysical properties. Mater. Sci. Eng. B 70, 411 (2000)

    Article  Google Scholar 

  10. J. Yuan, K. Kajiyoshi, K. Yanagisawa, Fabrication of silica nanocoatings on ZnS–type phosphors via a sol–gel route using cetyltrimethylammonium chloride dispersant. Mater. Lett. 60, 1284 (2006)

    Article  Google Scholar 

  11. J.F. Xu, W. Ji, J.Y. Lin, S.H. Tang, Y.W. Du, Preparation of ZnS nanoparticles by ultrasonic radiation method. Appl. Phys. A 641, 639 (1998)

    Article  ADS  Google Scholar 

  12. R.S. Sudar, D. Pukazhselvan, C.K. Mahadevan, Studies on the synthesis of cubic ZnS quantum dots, capping and optical–electrical characteristics. J. Alloys Compd. 517, 139 (2012)

    Article  Google Scholar 

  13. U. Baishya, D. Sarkar, ZnS nanocomposite formation: effect of ZnS source concentration ratio. Indian J. Pure Appl. Phys. 49, 186 (2011)

    Google Scholar 

  14. K.J. Rao, B. Vaidhyanathan, M. Ganguli, P.A. Ramakrishnan, Synthesis of inorganic solids using microwaves. Chem. Mater. 11, 882 (1999)

    Article  Google Scholar 

  15. S. Naween Dahal, J. Garcıa, S.M. Zhou, Humphrey, Beneficial effects of microwave-assisted heating versus conventional heating in noble metal nanoparticle synthesis. ACS Nano 6, 9433 (2012)

    Article  Google Scholar 

  16. J. Zhu, M. Zhou, J. Xu, X. Liao, Preparation of CdS and ZnS nanoparticles using microwave irradiation. Mater. Lett. 47, 25 (2001)

    Article  Google Scholar 

  17. Y. Zhao, J.M. Hong, J.J. Zhu, Microwave-assisted self-assembled ZnS nanoballs. J. Cryst. Growth 270, 438 (2004)

    Article  ADS  Google Scholar 

  18. Q. Ma, Y. Wang, J. Kong, H. Jia, Tunable synthesis, characterization and photocatalytic properties of various ZnS nanostructures. Ceram. Int. 42, 2854 (2016)

    Article  Google Scholar 

  19. B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison Wiley Publishing Company, Newyork, 1972), p. 110

    Google Scholar 

  20. S. Lee, D. Song, D. Kim, J. Lee, S. Kim, I.Y. Park, Y.D. Choi, Effects of synthesis temperature on particle size/shape and photoluminescence characteristics of ZnS:Cu nanocrystals. Mater. Lett. 58, 342 (2004)

    Article  Google Scholar 

  21. A.L. Rogach, A. Kornowski, M. Gao, A. Eychmüller, H. Weller, Synthesis and characterization of a size series of extremely small thiol-stabilized CdSe nanocrystals. J Phys Chem B 103, 3065 (1999)

    Article  Google Scholar 

  22. J. Tauc, Menth, states in Gap. J Non-crystalline Solids 8, 569 (1972)

    Article  ADS  Google Scholar 

  23. L. E. Brus, electron–electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state. J Chem. Phys 80, 4403 (1984)

    Article  ADS  Google Scholar 

  24. S. Mondal, S. Sudhu, S. Bhattacharya, S.K. Saha, Strain-induced tunable band gap and morphology-dependent photocurrent in RGO–CdS nanostructures. J. Phys. Chem. C 119, 27749 (2015)

    Article  Google Scholar 

  25. D. Denzler, M. Olschewski, K. Sattler, Luminescence studies of localized gap states in colloidal ZnS nanocrystals. J. Appl. Phys. 84, 2841 (1998)

    Article  ADS  Google Scholar 

  26. A.K. Kole, P. Kumbhakar, Effect of manganese doping on the photoluminescence characteristics of chemically synthesized zinc sulfide nanoparticles. Appl. nano sci 2, 15 (2012)

    Article  ADS  Google Scholar 

  27. J.F. Suyver, S.F. Wuister, J.J. Kelly, A. Meijerink, Synthesis and photoluminescence of nanocrystalline ZnS: Mn2+. Nano Lett. 1, 429 (2001)

    Article  ADS  Google Scholar 

  28. J. Bohnemann, R. Libanori, M.L. Moreira, E. Longo, High-efficient microwave synthesis and characterisation of SrSnO3. Chem. Eng. J. 155, 905 (2009)

    Article  Google Scholar 

  29. M. Sookhakian, Y.M. Amin, W.J. Basirun, M.T. Tajabadi, N.Kamarulzaman Synthesis, structural and optical properties of type-II ZnO–ZnS core–shell nanostructure. J. Lumin. 145, 244 (2014)

    Article  Google Scholar 

  30. B. Poornaprakash, U. Chalapathi, S.V.P. Vattikuti, Optical, and magnetic properties of Fe, Co, and Ni doped ZnS nanoparticles. Appl. Phys. A 123, 275 (2017)

    Article  ADS  Google Scholar 

  31. N. Karar, Photoluminescence from doped ZnS nanostructures. Solid State Commun. 142, 261 (2007)

    Article  ADS  Google Scholar 

  32. X. Liu, Z. Li, C. Zhao, W. Zhao, J. Yang, Y. Wang, F. Li, Facile synthesis of core–shell CuO/Ag nanowires with enhanced photocatalytic and enhancement in photocurrent. J. Colloid Interface Sci. 419, 9 (2014)

    Article  ADS  Google Scholar 

  33. K.C. Anoop Chandran, George, Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods. J. Nanopart. Res. 16, 2238 (2014)

    Article  Google Scholar 

  34. R. Gerhardt, Impedance and dielectric spectroscopy revisited—distinguishing localised relaxations from long range conductivity. J. Phys.Chem.Solids 55, 1491 (1994)

    Article  ADS  Google Scholar 

  35. J.C. Maxwell, A Treatise on Electricity and Magnetism (Oxford University Press, New York, 1973)

    MATH  Google Scholar 

  36. T. Shekharam, V.L. Rao, G. Yellaiah, T.M. Kumar, M. Nagabhushanam, AC conductivity, dielectric and impedance studies of Cd0.8xPbxZn0.2S mixed semiconductor compounds. J. Alloys Compd. 617, 952 (2014)

    Article  Google Scholar 

  37. A.S. Roy, S. Gupta, S. Sindhu, A. Parveen, P.C. Ramamurthy, Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Compos. Part B Eng. 47, 314 (2013)

    Article  Google Scholar 

  38. A.K. Jonscher, A new understanding of the dielectric relaxation of solids. J. Mater. Sci. 16, 2037 (1981)

    Article  ADS  Google Scholar 

  39. A. Artemenko, S. Payan, A. Rousseau, D. Levasseur, E. Arveux, G. Guegan, M. Maglione, Low temperature dielectric relaxation and charged defects in ferroelectric thin films Low temperature dielectric relaxation and charged defects in ferroelectric thin films. AIP Adv. 3, 0 42111 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank UGC-DAE Consortium for Scientific Research, Mumbai Centre for dielectric measurements, DST-SAIF centre at Karnatak University-Dharwad for photoluminescence measurements, Manipal Academy of Higher Education- Manipal for other characterisations and Bhandarkars’ Arts and Science college, Kundapura for sample preparation facilities. One of the authors, Lalitha Devi B thanks the University Grants Commission, Government of India, for teacher fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Mohan Rao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, B.L., Rao, K.M., Kekuda, D. et al. Evolution of defects and their effect on photoluminescence and conducting properties of green-synthesized ZnS nanoparticles. Appl. Phys. A 124, 767 (2018). https://doi.org/10.1007/s00339-018-2196-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2196-y

Navigation