Skip to main content
Log in

Effects of wavelength and fluence on the graphene nanosheets produced by pulsed laser ablation

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, graphene nanosheets and carbon nanoparticles were synthesized by nanosecond pulsed laser ablation in liquid nitrogen using Q-switched Nd:YAG laser. The aim is to investigate the wavelength dependence of carbon nanostructures formation mechanisms using fundamental and second harmonic of Nd:YAG laser irradiations at different laser fluence. Carbon nanoparticles and graphene nanosheets fabricated by pulsed laser ablation show the spherical and transparent sheets morphology, respectively, whereas, those due to the fundamental and second harmonic of Nd:YAG laser undergo fragmental shapes. Furthermore, the production rate of carbon nanoparticles produced at 532 nm is noticeably greater than that at 1064 nm wavelength and it can be due to the strong inverse Bremsstrahlung process at IR region. Raman spectra indicate that the graphene nanosheets produced at 532 nm are multilayer while by increasing the laser fluence and wavelength (1064 nm), bilayer graphene nanosheets are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. J.S. Sekhon, H.K. Malik, S.S. Verma, DDA simulations of noble metal and alloy nanocubes for tunable optical properties in biological imaging and sensing. RSC Advances 3, 15427–15434 (2013)

    Google Scholar 

  2. E. Solati, D. Dorranian, Investigation of the structure and properties of nanoscale grain-size β-tantalum thin films. Mol. Cryst. Liq. Cryst. 571, 67–76 (2013)

    Google Scholar 

  3. J.S. Sekhon, H.K. Malik, S.S. Verma, Tailoring surface plasmon resonance wavelengths and sensoric potential of core–shell metal nanoparticles. Sensor Lett. 11, 512–518 (2013)

    Google Scholar 

  4. F. Han, S. Yang, W. Jing, Z. Jiang, H. Liu, L. Li, A study on near-UV blue photoluminescence in graphene oxide prepared by Langmuir–Blodgett method. Appl. Surf. Sci. 345, 18–23 (2015)

    ADS  Google Scholar 

  5. J. Bouclé, N. Herlin-Boime, The benefits of graphene for hybrid perovskite solar cells. Synth. Met. 222, 3–16 (2016)

    Google Scholar 

  6. Q. Li, X. Guo, Y. Zhang, W. Zhang, C. Ge, L. Zhao, X. Wang, H. Zhang, J. Chen, Z. Wang, L. Sun, Porous graphene paper for supercapacitor applications. J. Mater. Sci. Technol. 33, 793–799 (2017)

    Google Scholar 

  7. C.I.L. Justino, A.R. Gomes, A.C. Freitas, A.C. Duarte, T. A. Rocha-Santos, Graphene based sensors and biosensors. TrAC Trends Anal. Chem. 91, 53–66 (2017)

    Google Scholar 

  8. M. Saulnier, C. Trudeau, S.G. Cloutier, S.B. Schougaard, Investigation of CVD multilayered graphene as negative electrode for lithium-ion batteries. Electrochim. Acta. 244, 54–60 (2017)

    Google Scholar 

  9. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, R.S. Ruoff, Graphene-based composite materials. Nature 442, 282–286 (2006)

    ADS  Google Scholar 

  10. F. Schwierz, Graphene transistors. Nature nanotechnology 5, 487–496 (2010)

    ADS  Google Scholar 

  11. G. Eda, G. Fanchini, M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotechnol. 3, 270–274 (2008)

    Google Scholar 

  12. E. Stratakis, G. Eda, H. Yamaguchi, E. Kymakis, C. Fotakis, M. Chhowalla, Free-standing graphene on microstructured silicon vertices for enhanced field emission properties. Nanoscale 4, 3069–3074 (2012)

    ADS  Google Scholar 

  13. M.M. Stylianakis, G.D. Spyropoulos, E. Stratakis, E. Kymakis, Solution-processable graphene linked to 3, 5-dinitrobenzoyl as an electron acceptor in organic bulk heterojunction photovoltaic devices. Carbon 50, 5554–5561 (2012)

    Google Scholar 

  14. E. Stratakis, M.M. Stylianakis, E. Koudoumas, E. Kymakis, Plasmonic organic photovoltaic devices with graphene based buffer layers for stability and efficiency enhancement. Nanoscale 5, 4144–4150 (2013)

    ADS  Google Scholar 

  15. E. Kymakis, C. Petridis, T.D. Anthopoulos, E. Stratakis, Laser-assisted reduction of graphene oxide for flexible, large-area optoelectronics. IEEE J. Sel. Top. Quantum Electron. 20, 106–115 (2014)

    ADS  Google Scholar 

  16. E. Solati, L. Dejam, D. Dorranian, Effect of laser pulse energy and wavelength on the structure, morphology and optical properties of ZnO nanoparticles. Opt. Laser Technol. 58, 26–32 (2014)

    ADS  Google Scholar 

  17. E. Solati, D. Dorranian, Effect of temperature on the characteristics of ZnO nanoparticles produced by laser ablation in water. Bull. Mater. Sci. 39, 1677–1684 (2016)

    Google Scholar 

  18. D. Tan, S. Zhou, J. Qiu, N. Khusro, Preparation of functional nanomaterials with femtosecond laser ablation in solution. J. Photochem. Photobiol. C 17, 50–68 (2013)

    Google Scholar 

  19. A. Zamiranvari, E. Solati, D. Dorranian, Effect of CTAB concentration on the properties of graphene nanosheet produced by laser ablation. Opt. Laser Technol. 97, 209–218 (2017)

    ADS  Google Scholar 

  20. E. Vaghri, D. Dorranian, M. Ghoranneviss, Effects of CTAB concentration on the quality of graphene oxide nanosheets produced by green laser ablation. Mater. Chem. Phys. 203, 235–242 (2018)

    Google Scholar 

  21. N. Tabatabaie, D. Dorranian, Effect of fluence on carbon nanostructures produced by laser ablation in liquid nitrogen. Appl. Phys. A 122, 558 (2016)

    ADS  Google Scholar 

  22. M. Moradi, E. Solati, S. Darvishi, D. Dorranian, Effect of aqueous ablation environment on the characteristics of ZnO nanoparticles produced by laser ablation. J. Cluster Sci. 27, 127–138 (2016)

    Google Scholar 

  23. A. Mehrani, D. Dorranian, E. Solati, Properties of Au/ZnO nanocomposite prepared by laser irradiation of the mixture of individual colloids. J. Cluster Sci. 26, 1743–1754 (2015)

    Google Scholar 

  24. E. Solati, D. Dorranian, Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water. J. Cluster Sci. 26, 727–742 (2015)

    Google Scholar 

  25. E. Solati, D. Dorranian, Estimation of lattice strain in ZnO nanoparticles produced by laser ablation at different temperatures. J. Appl. Spectrosc. 84, 490–497 (2017)

    ADS  Google Scholar 

  26. E. Solati, M. Mashayekh, D. Dorranian, Effects of laser pulse wavelength and laser fluence on the characteristics of silver nanoparticle generated by laser ablation. Appl. Phys. A 112, 689–694 (2013)

    ADS  Google Scholar 

  27. D. Dorranian, E. Solati, L. Dejam, Photoluminescence of ZnO nanoparticles generated by laser ablation in deionized water. Appl. Phys. A 109, 307–314 (2012)

    ADS  Google Scholar 

  28. P. Aazadfar, E. Solati, D. Dorranian, Properties of Au/Copper oxide nanocomposite prepared by green laser irradiation of the mixture of individual suspensions. Opt. Mater. 78, 388–395 (2018)

    ADS  Google Scholar 

  29. R. Fabbro, J. Fournier, P. Ballard, D. Devaux, J. Virmont, Physical study of laser-produced plasma in confined geometry. J. Appl. Phys. 68, 775–784 (1990)

    ADS  Google Scholar 

  30. M. Bonelli, A. Miotello, P.M. Ossi, A. Pessi, S. Gialanella, Laser-irradiation-induced structural changes on graphite. Phys. Rev. B 59, 13513–13516 (1999)

    ADS  Google Scholar 

  31. J. Hunter, J. Fye, M.F. Jarrold, Annealing C60+: synthesis of fullerenes and large carbon rings. Science 260, 784–786 (1993)

    ADS  Google Scholar 

  32. G. Compagnini, M. Sinatra, P. Russo, G.C. Messina, O. Puglisi, S. Scalese, Deposition of few layer graphene nanowalls at the electrodes during electric field-assisted laser ablation of carbon in water. Carbon 50, 2362–2365 (2012)

    Google Scholar 

  33. P. Nikolaev, W. Holmes, E. Sosa, P. Boul, S. Arepalli, L. Yowell, Effect of vaporization temperature on the diameter and chiral angle distributions of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 10, 3780–3789 (2010)

    Google Scholar 

  34. Q. Wei, J. Sankar, J. Narayan, Structure and properties of novel functional diamond-like carbon coatings produced by laser ablation. Surf. Coat. Technol. 146, 250–257 (2001)

    Google Scholar 

  35. N. Dwivedi, S. Kumar, H.K. Malik, Role of base pressure on the structural and nano-mechanical properties of metal/diamond-like carbon bilayers. Appl. Surf. Sci. 274, 282–287 (2013)

    ADS  Google Scholar 

  36. M. Dudek, A. Rosowski, A. Koperkiewicz, J. Grobelny, R. Wach, M. Sharp, P. French, L. Janasz, M. Kozanecki, Carbon nanoparticles fabricated by infrared laser ablation of graphite and polycrystalline diamond targets, Physica Stat. Solidi (a), 214, 1600318 (2017)

    ADS  Google Scholar 

  37. Z. S, P. Mortazavi, A. Parvin, Reyhani, Fabrication of graphene based on Q-switched Nd: YAG laser ablation of graphite target in liquid nitrogen. Laser Phys. Lett. 9, 547–552 (2012)

    ADS  Google Scholar 

  38. N. Dwivedi, S. Kumar, H.K. Malik, C.M.S. Rauthan, O.S. Panwar, Influence of bonding environment on nano-mechanical properties of nitrogen containing hydrogenated amorphous carbon thin films. Mater. Chem. Phys. 130, 775–785 (2011)

    Google Scholar 

  39. N. Dwivedi, R. McIntosh, C. Dhand, S. Kumar, H.K. Malik, S. Bhattacharyya, Structurally driven enhancement of resonant tunneling and nanomechanical properties in diamond-like carbon superlattices. ACS Appl. Mater. Interface 7, 20726–20735 (2015)

    Google Scholar 

  40. N. Dwivedi, S. Kumar, H.K. Malik, Nanostructured titanium/diamond-like carbon multilayer films: deposition, characterization, and applications, ACS Appl. Mater. Interface, 3, 4268–4278 (2011)

    Google Scholar 

  41. P. Mahdian Asl, D. Dorranian, Effect of liquid medium temperature on the production rate and quality of graphene nanosheets produced by laser ablation. Opt. Quant. Electron. 48, 535 (2016)

    Google Scholar 

  42. E. Solati, D. Dorranian, Nonlinear optical properties of the mixture of ZnO nanoparticles and graphene nanosheets. Appl. Phys. B 122, 1–10 (2016)

    Google Scholar 

  43. M. Savadkoohi, D. Dorranian, E. Solati, Using silicon nanoparticles to modify the surface of graphene nanosheets. Mater. Sci. Semicond. Process. 75, 75–83 (2018)

    Google Scholar 

  44. E. Solati, M. Savadkoohi, D. Dorranian, Nonlinear optical response of graphene/silicon nanocomposites. Opt. Quant. Electron. 50, 268 (2018)

    Google Scholar 

  45. D. Abramov, S. Arakelian, D. Kochuev, S. Makov, V. Prokoshev, K. Khorkov, Interaction of femtosecond laser radiation with carbon materials: exfoliation of graphene structures and synthesis of low-dimensional carbon structures. Nanosyst. Phys. Chem. Math. 7, 220–225 (2016)

    Google Scholar 

  46. S.Z. Mortazavi, P. Parvin, A. Reyhani, A.N. Golikand, S. Mirershadi, Effect of laser wavelength at IR (1064 nm) and UV (193 nm) on the structural formation of palladium nanoparticles in deionized water. J. Phys. Chem. C 115, 5049–5057 (2011)

    Google Scholar 

  47. M. Stafe, A. Marcu, N.N. Puscas, Pulsed laser ablation of solids: basics, theory and applications, 53, Springer, Berlin (2013)

    Google Scholar 

  48. L. Fornarini, F. Colao, R. Fantoni, V. Lazic, V. Spizzicchino, Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: a theoretical and experimental approach. Spectrochimica Acta Part B Atomic Spectrosc. 60, 1186–1201 (2005)

    ADS  Google Scholar 

  49. T. Mościcki, J. Hoffman, z Szymański, Modelling of plasma formation during nanosecond laser ablation. Arch. Mech 63, 99–116 (2011)

    MATH  Google Scholar 

  50. J. Xiao, p. C.X. Liu, G.W. Wang, Yang, External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog. Mater. Sci. 87, 140–220 (2017)

    Google Scholar 

  51. S. Bhandari, M. Deepa, A.G. Joshi, A.P. Saxena, A.K. Srivastava, Revelation of graphene-Au for direct write deposition and characterization. Nanoscale Res. Lett. 6, 424 (2011)

    ADS  Google Scholar 

  52. M. Zhou, J. Tang, Q. Cheng, G. Xu, P. Cui, L.C. Qin, Few-layer graphene obtained by electrochemical exfoliation of graphite cathode. Chem. Phys. Lett. 572, 61–65 (2013)

    ADS  Google Scholar 

  53. L. Zhang, Y. Xing, N. He, Y. Zhang, Z. Lu, J. Zhang, Z. Zhang, Preparation of graphene quantum dots for bioimaging application. J. Nanosci. Nanotechnol. 12, 2924–2928 (2012)

    Google Scholar 

  54. J.L. Chen, X.P. Yan, A dehydration and stabilizer free approach to production of stable water dispersions of graphene nanosheets. J. Mater. Chem. 20, 4328–4332 (2010)

    Google Scholar 

  55. V. Kumar, V. Singh, S. Umrao, V. Parashar, A.K. Sh Abraham, G. Singh, P.S. Nath, A. Saxena, Srivastava, Facile, rapid and upscaled synthesis of green luminescent functional graphene quantum dots for bioimaging. RSC Adv. 4, 21101–21107 (2014)

    Google Scholar 

  56. H. Ghanbari, R. Sarraf-Mamoory, J. Sabbagh Zadeh, A. Chehrghani, R. Malekfar, Nonlinear optical absorption of carbon nanostructures synthesized by laser ablation of highly oriented pyrolytic graphite in organic solvents. Int. J. Opt. Photonics 7, 113–124 (2013)

    Google Scholar 

  57. V. Borjanović, L. Bistričić, I. Pucić, L. Mikac, R. Slunjski, M. Jakšić, G. McGuire, A.T. Stanković, O. Shenderova, Proton-radiation resistance of poly (ethylene terephthalate)–nanodiamond–graphene nanoplatelet nanocomposites. J. Mater. Sci. 51, 1000–1016 (2016)

    ADS  Google Scholar 

  58. B. Pan, J. Xiao, J. Li, P. Liu, C. Wang, G. Yang, Carbyne with finite length: The one-dimensional sp carbon. Science Adv. 1, e1500857 (2015)

    ADS  Google Scholar 

  59. S.N.A.M. Yazid, I.M. Isa, S.A. Bakar, N. Hashim, Facile, cost effective and green synthesis of graphene in alkaline aqueous solution. Int. J. Electrochem. Sci. 10, 7977–7984 (2015)

    Google Scholar 

  60. H. Park, D.A. Reddy, Y. Kim, S. Lee, R. Ma, T.K. Kim, Synthesis of ultra-small Pd nanoparticles deposited on CdS nanorods by pulsed laser ablation in liquid: role of metal nanocrystal size in the photocatalytic hydrogen production. Chem. A Eur. J. 23, 13112–13119 (2017)

    Google Scholar 

  61. L.M. Malard, M.A.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, Raman spectroscopy in graphene. Phys. Rep. 473, 51–87 (2009)

    ADS  Google Scholar 

  62. Z. Li, Y. Xu, B. Cao, L. Qi, S. He, C. Wang, J. Zhang, J. Wang, K. Xu, Raman spectra investigation of the defects of chemical vapor deposited multilayer graphene and modified by oxygen plasma treatment. Superlattices Microstruct. 99, 125–130 (2016)

    ADS  Google Scholar 

  63. J. Jiang, R. Pachter, F. Mehmood, A.E. Islam, B. Maruyama, J.J. Boeckl, A Raman spectroscopy signature for characterizing defective single-layer graphene: defect-induced II(D)/I (D′) intensity ratio by theoretical analysis. Carbon 90, 53–62 (2015)

    Google Scholar 

  64. G. Sobon, J. Sotor, J. Jagiello, R. Kozinski, M. Zdrojek, M. Holdynski, P. Paletko, J. Boguslawski, L. Lipinska, K.M. Abramski, Graphene oxide vs. reduced graphene oxide as saturable absorbers for Er-doped passively mode-locked fiber laser. Opt. Express 20, 19463–19473 (2012)

    ADS  Google Scholar 

  65. D. Pan, S. Wang, B. Zhao, M. Wu, H. Zhang, Y. Wang, Z. Jiao, Li storage properties of disordered graphene nanosheets. Chem. Mater. 21, 3136–3142 (2009)

    Google Scholar 

  66. M.A. Pimenta, G. Dresselhaus, M.S. Dresselhaus, L.G. Cancado, A. Jorio, R. Saito, Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 9, 1276–1290 (2007)

    Google Scholar 

  67. N. Dwivedi, S. Kumar, I. Rawal, H.K. Malik, Influence of consumed power on structural and nano-mechanical properties of nano-structured diamond-like carbon thin films. Appl. Surf. Sci. 300, 141–148 (2014)

    ADS  Google Scholar 

  68. N. Dwivedi, S. Kumar, R.K. Tripathi, J.D. Carey, H.K. Malik, M.K. Dalai, Structural and electronic characterization of nanocrystalline diamond like carbon thin films. ACS Appl. Mater. Interfaces 4, 5309–5316 (2012)

    Google Scholar 

  69. N.K. Memon, D.T. Stephen, M. Chhowalla, B.H. Kear, Role of substrate, temperature, and hydrogen on the flame synthesis of graphene films, Proc. Combust. Inst. 34, 2163–2170 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elmira Solati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Solati, E., Vaghri, E. & Dorranian, D. Effects of wavelength and fluence on the graphene nanosheets produced by pulsed laser ablation. Appl. Phys. A 124, 749 (2018). https://doi.org/10.1007/s00339-018-2176-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2176-2

Navigation