Skip to main content
Log in

Pulsed Nd:YAG laser assisted fabrication of graphene nanosheets in water

  • Articles
  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Graphene nanosheets were prepared by pulsed Nd:YAG laser ablation of graphite target in H2O under ambient conditions. The synthesized graphene nanosheets were characterized by high resolution transmission electron microscope (HRTEM), X-ray diffraction (XRD), Raman spectroscopy and Selected Area Electron Diffraction (SAED). The obtained structural and morphological analysis confirmed that the graphene nanosheets could be formed in an aqueous medium via one step method where a nanosecond pulsed near-infrared (NIR) laser (λ = 1064 nm) is used to ablate the surface of a pure graphite target. Compared to other used chemical methods to synthesis graphene nanosheets, laser ablation is an easy, versatile, environmental friendly and rapidly growing method for the synthesis of nanostructured materials such as graphene nanosheets. This technique showed normal operation in liquid medium (i.e. water or organic) under ambient conditions. Our study confirmed the great potential of laser ablation in liquid method for the fabrication of graphene nanosheets based nanofluids wich has a potential applicatiuon as a heat transfer fluid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Mtshali, D. Hamidi, T.Kerdja, P.B. Bassuah, H. Haneda, and M. Maaza, Opt. Commun. 285, 3272 (2012).

    Article  CAS  Google Scholar 

  2. M. Maaza, M. Mhlungu, M.O. Ndwandwe, N. Cingo, A.C.Beye, A. Govindaraj, and C.N.R. Rao, Int. J. of Nanotechnology, 4, 638 (2007).

    Article  CAS  Google Scholar 

  3. F.T. Thema, P. Beukes, B.D. Ngom, E. Manikandan, and M. Maaza, J. Alloys & Compounds, 648, 326 (2015).

    Article  CAS  Google Scholar 

  4. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  5. K. S. Novoselov, A. K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos and A. A. Firsov, Nature 438, 197 (2005).

    Article  CAS  Google Scholar 

  6. Zhang, Y., Tan, Y.W., Stormer, H.L. and Kim, P., Nature, 438, 201 (2005.

    Article  CAS  Google Scholar 

  7. Mortazavi, S.Z., Parvin, P. and Reyhani, A., Laser Phys. Lett. 9, 547 (2012).

    Article  CAS  Google Scholar 

  8. Z. Luo, P. M. Vora, E. J. Mele, A. C. Johnson and J. M. Kikkawa, Appl. Phys. Lett. 94, 111909 (2009).

    Article  CAS  Google Scholar 

  9. J. B. Wu, M. Agrawal, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen and P. Peumans, ACS Nano 4, 43 (2009).

    Article  CAS  Google Scholar 

  10. H. Park, J. A. Rowehl, K. K. Kim, V. Bulovic and J. Kong, Nanotechnology 21, 505204 (2010).

    Article  CAS  Google Scholar 

  11. M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F, Nature 474, 64 ( 2011).

    Article  CAS  Google Scholar 

  12. J. Liang, Y. Huang, J. Oh, M. Kozlov, D. Sui, S. Fang, R. H. Baughman, Y. Ma and Y. Chen, Adv. Funct. Mater. 21, 3778 (2011).

    Article  CAS  Google Scholar 

  13. Geim, A.K. and Novoselov, K.S, Nat. Mater. 6, 183 (2007).

    Article  CAS  Google Scholar 

  14. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, and Dubonos SV, Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  15. Camara, N., Rius, G., Huntzinger, J.R., Tiberj, A., Mestres, N., Godignon, P. and Camassel, J, Appl. Phys. Lett. 93,123503 (2008).

    Article  CAS  Google Scholar 

  16. Stankovich, S., Dikin, D.A., Dommett, G.H., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S, Nature, 442, 282 (2006).

    Article  CAS  Google Scholar 

  17. Y, Tong, S. Bohm, and M. Song, J Nanomed Nanotechnol. 1, 1003 (2013).

    Google Scholar 

  18. D.A. Boyd, W.H. Lin, C.C. Hsu, M.L. Teague, C.C. Chen, Y.Y. Lo, W.Y. Chan, W.B. Su, T.C. Cheng, C.S. Chang, and Wu, C.I, Nat. Commun. 6, 6620 (2015).

    Article  CAS  Google Scholar 

  19. L. Y. Jiao, L. Zhang, X. R. Wang, G. Diankov, and H. J. Dai, Nature 458, 877 (2009).

    Article  CAS  Google Scholar 

  20. Z.S. Wu, W. Ren, L. Gao, B. Liu, J. Zhao, and H.M. Cheng, Nano Res. 3, 16 (2010).

    Article  CAS  Google Scholar 

  21. H. L Guo, X. F. Wang, Q.Y. Qian, F. B. Wang, and, X. H. Xia, ACS Nano 3, 2653 (2009).

    Article  CAS  Google Scholar 

  22. S. Z. Mortazavi, P. Parvin and A. Reyhani, Laser Phys. Lett. 9, 547 (2012).

    Article  CAS  Google Scholar 

  23. C. D. Kim, B. K. Min and W.S. Jung, Carbon 47, 1610 (2009).

    Article  CAS  Google Scholar 

  24. A. Chakrabarti, J. Lu, J.C. Skrabutenas, T. Xu, Z. Xiao, J. A. Maguire, and N. S. J. Hosmane, Mater. Chem 21, 9491 (2011).

    Article  CAS  Google Scholar 

  25. T. M Maiman, Nature 187, 493 (1960).

    Article  Google Scholar 

  26. H. Zeng, X. W. Du, S. C. Singh, S. A. Kulinich, S. Yang, J. He, and W. Cai, Adv. Funct. Mater. 22, 1333 (2012).

    Article  CAS  Google Scholar 

  27. S. Z. Mortazavi, P. Parvin, and A. Reyhani, Laser Phys. Lett. 9 (7), 547 (2012).

    Article  CAS  Google Scholar 

  28. H. O. Jeschke, M. E. Garcia, and K. H. Bennemann, Phys. Rev. Lett. 87, 015003 (2001).

    Article  CAS  Google Scholar 

  29. Y. Miyamoto, H. Zhang, and D. Tom ´ anek, Phys. Rev. Lett. 104, 208302 (2010).

    Article  CAS  Google Scholar 

  30. G. Compagnini, P. Russo, F. Tomarchio, O. Puglisi, L. D’Urso, and S. Scalese, Nanotechnology 23, 505601 (2012).

    Article  CAS  Google Scholar 

  31. B. N. Chicbkov, C. Momma, S. Nolte, F. Von Alvensleben, and A. Tiinnermann, Appl. Phys. A, 63, 109 (1996).

    Article  Google Scholar 

  32. L. Jiang, and H. L. Tsai, J. Appl. Phys. 100, 023116 (2006).

    Article  CAS  Google Scholar 

  33. V. Amendola, and M. Meneghetti, Phys. Chem. Chem. Phys. 11, 3805 (2009).

    Article  CAS  Google Scholar 

  34. P. Russo, A. Hu, G. Compagnini, W.W. Duleyd, and N. Y. Zhou, Nanoscale 6, 2381 (2014).

    Article  CAS  Google Scholar 

  35. D. Gao, M. Si, J. Li, J. Zhang, Z. Zhang, Z. Yang, and D. Xue, Nanoscale Res. Lett. 8, 129 (2013).

    Article  CAS  Google Scholar 

  36. S. Bhandari, M. Deepa, A. G. Joshi, A. P. Saxena, and A. K. Srivastava, Nanoscale Res. Lett. 6, 424 (2011).

    Article  CAS  Google Scholar 

  37. S. Stankovich, D. A. Dikin, G. H. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).

    Article  CAS  Google Scholar 

  38. A. K. Sarkar, S. Saha, S. Ganguly, D. Banerjee, and K. Kargupta, Int. J. Energy Res. 38 1889 (2014).

    Article  CAS  Google Scholar 

  39. S. Khamlich, T. Mokrani, M.S. Dhlamini, B.M. Mothudi, and M. Maaza, J. Colloid Interface Sci. 461, 154 (2016).

    Article  CAS  Google Scholar 

  40. A. C. .Ferrari, Solid State Commun. 143, 47 (2007).

    Article  CAS  Google Scholar 

  41. P. Chamoli, M. K. Das, and K. K. Kar, J. Appl. Phys. 122, 185105 (2017).

    Article  CAS  Google Scholar 

  42. S. Khamlich, F. Barzegar, Z. Y. Nuru, J. K. Dangbegnon, A. Bello, B.D. Ngom, N. Manyala, and M.Maaza, Synth. Met. 198, 101 (2014).

    Article  CAS  Google Scholar 

  43. C. Bora, and S. K. Dolui, Polymers 53, 923 (2012).

    Article  CAS  Google Scholar 

  44. S. Khamlich, T. Khamliche, M. S. Dhlamini, M. Khenfouch, B. M. Mothudi, and M. Maaza, J. Colloid Interface Sci. 493, 130 (2017).

    Article  CAS  Google Scholar 

  45. A. Das, B. Chakraborty, and A. K. Sood, Bull. Mater. Sci. 31, 579 (2008).

    Article  CAS  Google Scholar 

  46. A. H. C. Neto, and F. Guinea, Phys. Rev. B61, 045404 (2007),

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbambo, M.C., Khamlich, S., Khamliche, T. et al. Pulsed Nd:YAG laser assisted fabrication of graphene nanosheets in water. MRS Advances 3, 2573–2580 (2018). https://doi.org/10.1557/adv.2018.275

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2018.275

Navigation