Skip to main content
Log in

Nanocrystalline iron manganite prepared by sol–gel self-combustion method for sensor applications

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The nanocrystalline iron manganite was be successfully synthesized, for capacitive humidity sensor application, by sol–gel self-combustion method using polyvinyl alcohol as colloidal medium, followed by heat treatment. The best performances as humidity sensor were found, at working frequency of 100 Hz: a high sensitivity over a wide range of relative humidity, 11–98% RH (the capacity increases by over 40 times); a good linearity of the logC vs. RH characteristics over the whole RH range, for all used frequencies. The sensor exhibits very small hysteresis, lower sensitivity to temperature, keeping linear characteristics and a short response time. The investigated material holds promise for humidity monitoring applications, taking into account the low cost, a wide range of relative humidity and a low-contamination impact.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. N. Rezlescu, E. Rezlescu, C. Doroftei, P.D. Popa, Study of some Mg-based ferrites as humidity sensors. J. Phys. Conf. Ser. 15, 296–299 (2005)

    ADS  Google Scholar 

  2. E. Traversa, Ceramic sensors for humidity detection: the state-of-the-art and future developments. Sens. Actuators B 23, 135–156 (1995)

    Google Scholar 

  3. Y. Wang, S. Park, J.T.W. Yeow, A. Langner, F. Müller, A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating. Sens. Actuators B 149, 136–142 (2010)

    Google Scholar 

  4. H. Aria, S. Ezeki, Y. Shimizu, O. Shippo, T. Seiyama, Semiconductive humidity sensor of perovskite-type oxides. Anal. Chem. Symp. Ser. Chem. Sens. 17, 393–398 (1983)

    Google Scholar 

  5. J. Holc, J. Slunecko, M. Hrovat, Temperature characteristics of electrical properties of (Ba,Sr)TiO3 thick film humidity sensors. Sens. Actuators B 26–27, 99–102 (1995)

    Google Scholar 

  6. Z. Wang, C. Chen, T. Zhang, H. Guo, B. Zou, R. Wang, F. Wu, Humidity sensitive properties of K+-doped nanocrystalline LaCo0.3Fe0.7O3. Sens. Actuators B 126, 678–683 (2007)

    Google Scholar 

  7. C. Doroftei, P.D. Popa, F. Iacomi, Study of the influence of nickel ions substitutes in barium stannates used as humidity resistive sensors. Sens. Actuators A 173, 24–29 (2012)

    Google Scholar 

  8. Z.A. Ansari, T.G. Ko, J.-H. Oh, Humidity sensing behavior of thick films of strontium-doped lead-zirconium-titanate. Surf. Coatings Technol. 179, 182–187 (2004)

    Google Scholar 

  9. Y.C. Yeh, T.Y. Tseng, Analysis of the d.c. and a.c. properties of K2O-doped porous Ba0.5Sr0.5TiO3 ceramic humidity sensor. J. Mater. Sci. 24, 2739–2745 (1989)

    ADS  Google Scholar 

  10. S. Ke, H. Huang, H. Fan, H.L.W. Chan, L.M. Zhou, Structural and electric properties of barium strontium titanate based ceramic composite as a humidity sensor. Solid State Ion. 179, 1632–1635 (2008)

    Google Scholar 

  11. J.P. Lucaszewicz, Diode-type humidity sensor using perovskite-type oxides operable at room temperature. Sens. Actuators B 4, 227–232 (1991)

    Google Scholar 

  12. A. Tripathy, S. Pramanik, A. Manna, S. Bhuyan, N.F.A. Shah, Z. Radzi, N.A.A. Osman, Design and development for capacitive humidity sensor applications of lead-free Ca, Mg, Fe, Ti-Oxides-based electro-ceramics with improved sensing properties via physisorption. Sensors 16, 1135–1152 (2016)

    Google Scholar 

  13. S. Upadhyay, P. Kavitha, Lanthanum doped stannate for humidity sensor. Mater. Lett. 61, 1912–1915 (2007)

    Google Scholar 

  14. S. Agarwal, G.L. Sharma, Humidity sensing properties of (Ba, Sr)TiO3 thin films grown by hydrothermal-electrochemical method. Sens. Actuators B 85, 205–211 (2002)

    Google Scholar 

  15. Z. Li, S. Wang, B. Li, X. Xiang, A new method for synthesis of FeMnO3 ceramics and its phase transformation. J. Nano Res. 37, 122–131 (2016)

    Google Scholar 

  16. M. Li, W. Xu, W. Wang, Y. Liu, B. Cui, X. Guo, Facile synthesis of specific FeMnO3 bellow sphere/graphene composites and their superior electrochemical energy storage performances for supercapacitor. J. Power Sources 248, 465–473 (2014)

    ADS  Google Scholar 

  17. K. Cao, H. Liu, X. Xu, Y. Wang, L. Jiao, FeMnO3: a high-performance Li-ion battery anode material. Chem. Commun. 52, 11414–11417 (2016)

    Google Scholar 

  18. S. Rayaproln, S.D. Kaushik, Magnetic and magnetocaloric properties of FeMnO3. Ceram. Int. 41, 9567–9571 (2015)

    Google Scholar 

  19. P. Mungse, G. Saravanan, S. Rayalu, N. Labhsetwar, Mixed oxides of iron and manganese as potential low-cost oxygen carriers for chemical looping combustion. Energy Technol. 3, 856–865 (2015)

    Google Scholar 

  20. M.H. Habibi, V. Mosavi, Wet coprecipitation preparation of perovskite-type iron manganite nano powder pure phase using nitrate precursors: structural, opto-electronic, morphological and photocatalytic activity for degradation of Nile blue dye. J. Mater. Sci. Mater. Electron. 28, 10270–10276 (2017)

    Google Scholar 

  21. S.K. Kulshreshtha, S. Sharma, R. Vijayalakshmi, R. Sasikala, CO oxidation over Pd/γ-FeMnO3 catalyst. Indian J. Chem. Technol. 11, 427–433 (2004)

    Google Scholar 

  22. M.H. Habibi, V. Mosavi, Urea combustion synthesis of nano-structure bimetallic perovskite FeMnO3 and mixed monometallic iron manganese oxides: effects of preparation parameters on structural, opto-electronic and photocatalytic activity for photo-degradation of Basic Blue 12. J. Mater. Sci. Mater. Electron. 28, 8473–8479 (2017)

    Google Scholar 

  23. C. Doroftei, P.D. Popa, F. Iacomi Selectivity between methanol and ethanol gas of La–Pb–Fe–O perovskite synthesized by novel method. Sens. Actuators A 190, 176–180 (2013)

    Google Scholar 

  24. C. Doroftei, P.D. Popa, F. Iacomi, L. Leontie, The influence of Zn2+ ions on the microstructure, electrical and gas sensing properties of La0.8Pb0.2FeO3 perovskite. Sens. Actuators B 191, 239–245 (2014)

    Google Scholar 

  25. C. Doroftei, L. Leontie, Synthesis and characterization of some nanostructured composite oxides for low temperature catalytic combustion of dilute propane. RSC Adv. 7, 27863–27871 (2017)

    Google Scholar 

  26. N. Rezlescu, P.D. Popa, E. Rezlescu, C. Doroftei, Microstructure characteristics of some polycrystalline oxide compounds prepared by sol–gel-selfcombustion way for gas sensor applications. Rom. J. Phys. 53, 545–555 (2008)

    Google Scholar 

  27. C. Doroftei, L. Leontie, A. Popa, The study on nanogranular system manganites La–Pb–Ca–Mn–O which exhibits a large magnetoresistance near room temperature. J. Mater. Sci. Mater. Electron. 28, 12891–12897 (2017)

    Google Scholar 

  28. H. Klung, L. Alexander, X-ray diffraction procedures (Wiley, New York, 1962)

    Google Scholar 

  29. B.D. Cullity, R.S. Stock, Elements of X-ray diffraction, 3rd edn. (Prentice Hall, New Jersey, 2001)

    Google Scholar 

  30. S. Lowell, J.E. Shields, M.A. Thomas, M. Thommes, Characterization of porous solids and powders: surface area, pore size and density (Kluwer, Dordrecht, 2004)

    Google Scholar 

  31. N. Rezlescu, C. Doroftei, E. Rezlescu, P.D. Popa, Structure and humidity sensitive electrical properties of the Sn4+ and/or Mo6+ substituted Mg ferrite. Sens. Actuators B 115, 589–595 (2006)

    Google Scholar 

  32. D. Seifu, A. Kebede, F.W. Oliver, E. Hoffman, E. Hammond, C. Wynter, A. Aning, L. Takacs, I.-L. Siu, J.C. Walker, G. Tessema, M.S. Seehra, Evidence of ferrimagnetic ordering in FeMnO3 produced by mechanical alloying. J. Mag. Mag. Mater. 212, 178–182 (2000)

    ADS  Google Scholar 

  33. N. Rezlescu, E. Rezlescu, P.D. Popa, E. Popovici, C. Doroftei, M. Ignat, A.C. Barbinta, Morphological and structural aspects of some ferrospinel nanopowders for catalyst applications. Dig. J. Nanomater. Biostruct. 7, 1709–1717 (2012)

    Google Scholar 

  34. D.V. Ivanov, L.G. Pinaeva, E.M. Sadovskaya, L.A. Isupova, Influence of the mobility of oxygen on the reactivity of La1 – xSrxMnO3 perovskites in methane oxidation. Kinetics Catal. 52, 401–408 (2011)

    Google Scholar 

  35. A. Tripathy, S. Pramanik, J. Cho, J. Santhosh, N.A.A. Osman, Role of morphological structure, doping, and coating of different materials in the sensing characteristics of humidity sensors. Sensors 14, 16343–16422 (2014)

    Google Scholar 

  36. J. Wang, X.H. Wang, X.D. Wang, Study on dielectric properties of humidity sensing nanometer materials. Sens. Actuators B 108, 445–449 (2005)

    Google Scholar 

  37. H. Bi, K. Yin, X. Xie, J. Ji, S. Wan, L. Sun, M. Terrones, M.S. Dresselhaus, Ultrahigh humidity sensitivity of graphene oxide. Sci. Rep. 3, 2714–2720 (2013)

    ADS  Google Scholar 

  38. J. Das, S.M. Hossain, S. Chahraborty, Role of parasitic in humidity sensing by porous silicon. Sens. Actuators A 94, 44–52 (2001)

    Google Scholar 

  39. B.C. Yadav, R. Srivastava, C.D. Dwivedi, Synthesis and characterization of ZnO-TiO2 nanocomposite and its application as a humidity sensor. Philos. Mag. 88, 1113–1124 (2008)

    ADS  Google Scholar 

  40. Z. Wang, L. Shi, F. Wu, S. Yuan, Y. Zhao, M. Zhang, The sol–gel template synthesis of porous TiO2 for a high performance humidity sensor. Nanotechnology 22, 275502–275509 (2011)

    ADS  Google Scholar 

  41. S.J. Gregg, K.S.W. Sing, Adsorption, surface area and porosity, 2nd edn. (Academic Press, New York, 1982)

    Google Scholar 

  42. A.W. Adamson, A.P. Gast, Physical chemistry of surfaces, 6th edn. (Wiley-Blackwell, New York, 1997)

    Google Scholar 

  43. E. McCafferty, A. Zettlemoyer, Adsorption of water vapour on α-Fe2O3. Discuss. Faraday Soc. 52, 239–254 (1971)

    Google Scholar 

  44. T. Seiyama, N. Yamazoe, H. Arai, Ceramic humidity sensors. Sens. Actuators 4, 85–96 (1983)

    Google Scholar 

  45. N. Agmon, The Grotthuss mechanism. Chem. Phys. Lett. 244, 456–462 (1995)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Project No. 86//04-4-1121-2015/2020, JINR-RO 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corneliu Doroftei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leontie, L., Doroftei, C. & Carlescu, A. Nanocrystalline iron manganite prepared by sol–gel self-combustion method for sensor applications. Appl. Phys. A 124, 750 (2018). https://doi.org/10.1007/s00339-018-2175-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2175-3

Navigation