Skip to main content
Log in

Crystallization and luminescence properties of various Eu3+ content doped Al2O3 prepared by sol–gel method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Eu3+ doped alumina has been prepared by sol–gel method. And the crystallization and luminescence properties of the samples were studied by DSC, XRD, Raman, and emission spectra. The structure analysis showed boehmite precipitated after drying at 90 °C, the single γ-Al2O3 formed when calcined at 500 °C, and the polycrystalline including EuAlO3 and α-Al2O3 were observed at 1150 °C. Emission spectra showed that the quenching concentration of Eu3+ ion is different after heat treatment at 90 °C, 500 °C, and 1150 °C. And for the samples with same Eu3+ content, the maximum luminescence intensity is always observed in sample calcined at 500 °C, while the minimum at 1150 °C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. D. Pauee, R. Tertian, R. Biais, Research on the constitution of alumina gels. Bull. Soc. Chim. Fr. 10, 1301 (1958)

    Google Scholar 

  2. W.H. Gitzen, Alumina as a Ceramic Material. Am. Ceram. Soc. 9, 51–84 (1970)

    Google Scholar 

  3. B.E. Yoldas, Alumina gels that form porous transparent Al2O3. J. Muter. Sci. 10, 1856–1860 (1975)

    Article  ADS  Google Scholar 

  4. B.E. Yoldas, Alumina sol preparation from alkoxides. Am. Cerum. Soc. Bull. 54, 289–290 (1975)

    Google Scholar 

  5. B.E. Yoldas, Hydrolysis of aluminium alkoxides and bayerite conversion. J. Appl. Chem. Biotech. 23, 803–809 (1973)

    Article  Google Scholar 

  6. Y. Liu, Electrochemical detection of prostate-specific antigen based on gold colloids/alumina derived sol–gel film. Thin Solid Films 516, 1803–1808 (2008)

    Article  ADS  Google Scholar 

  7. C.A. Milea, E. Ienei et al., Sol–gel Al2O3 powders-matrix in solar thermal absorbers. J. Sol–Gel. Sci. Technol. 67, 112–120 (2013)

    Article  Google Scholar 

  8. J.M.A. Caiut, S.J.L. Ribeiro et al., Synthesis and luminescence properties of water dispersible Eu3+-doped boehmite nanoparticles. Nanotechnology 18, 455605 (2007)

    Article  Google Scholar 

  9. A.C. Pierre, D.R. Uhlmann, Gelation of aluminum hydroxide sols. J. Am. Cerum. Soc. 70, 28–32 (1987)

    Article  Google Scholar 

  10. A.C. Pierre, D.R. Uhlmann, Amorphous aluminum hydroxide gels. J. Non-Cryst. Solids 82, 271–276 (1986)

    Article  ADS  Google Scholar 

  11. N. K.Tadanaga, Katata et al., Formation process of super-water-repellent Al2O3 coating films with high transparency by the sol–gel method. J. Am. Ceram. Soc. 80, 3213–3216 (1997)

    Article  Google Scholar 

  12. M. Nogami, K. Nagasaka, Toughened glass-ceramics containing ZrO2 and Al2O3 prepared by the sol–gel process from metal alkoxides. J. Non-Cryst. Solids 100, 298–302 (1988)

    Article  ADS  Google Scholar 

  13. M. Sales, J. Alarcon, Crystallization of sol–gel-derived glass ceramic powders in the CaO–MgO–Al2O3–SiO2 system. J. Mater. Sci. 29, 5153–5157 (1994)

    Article  ADS  Google Scholar 

  14. B. Hu, M. Yao, et. al., Optical properties of amorphous Al2O3 thin films prepared by a sol–gel process. Ceram. Int. 40, 14133–14139 (2014)

    Article  Google Scholar 

  15. Y. Onishi, T. Nakamura et al., Solubility limit and luminescence properties of Eu3+ ions in Al2O3 powder. J. Lumin. 176, 266–271 (2016)

    Article  Google Scholar 

  16. L. Radonjic, V. Srdic et al., Relationship between the microstructure of boehmite gels and their transformation to alpha-alumina. Mater. Chem. Phys. 33, 298–306 (1993)

    Article  Google Scholar 

  17. S. Stojadinović, N. Tadić, R. Vasilić, Photoluminescence of Sm2+/Sm3+ doped Al2O3 coatings formed by plasma electrolytic oxidation of aluminum. J. Lumin. 192, 110–116 (2017)

    Article  Google Scholar 

  18. G.N. van den Hoven, R. J. I., M. Koper, A. Polman, Net optical gain at 1.53 µm in Er-doped Al2O3 waveguides on silicon. Appl. Phys. Lett. 68, 1886–1888 (1996)

    Article  ADS  Google Scholar 

  19. K. Wörhoff, M. Pollnau, Rare-earth-ion-doped Al2O3 for integrated optical amplification. Proc. SPIE Int. Soc. Opt. Eng. 7604, 239–250 (2017)

    Google Scholar 

  20. C. Falcony, A. Ortiz et al., Luminescent characteristics of Tb doped Al2O3 films deposited by spray pyrolysis. J. Electrochem. Soc. 139, 267–271 (1992)

    Article  Google Scholar 

  21. E.H. Penilla, Y. Kodera, J.E. Garay, Blue–green emission in terbium-doped alumina (Tb:Al2O3) transparent ceramics. Adv. Funct. Mater. 23, 6036–6043 (2013)

    Article  Google Scholar 

  22. Y. Gui, Q. Yang et al., Spectroscopic properties of neodymium-doped alumina (Nd3+:Al2O3) translucent ceramics. J. Lumin. 184, 232–234 (2017)

    Article  Google Scholar 

  23. Y. He, J. He et al., Luminescent properties and energy transfer of luminescent carbon dots assembled mesoporous Al2O3: Eu3+ co-doped materials for temperature sensing. J. Colloid Interf. Sci. 496, 8–15 (2017)

    Article  ADS  Google Scholar 

  24. B. Dong, T. Yang, M.K. Lei, Optical high temperature sensor based on green up-conversion emissions in Er3+ doped Al2O3. Sens. Actuat. B Chem. 123, 667–670 (2007)

    Article  Google Scholar 

  25. C. Yu, Q. Yang et al., Synthesis of ordered mesoporous γ-Al2O3:Eu3+ with high luminous performance and thermal stability. J. Rare Earth. 29, 732–736 (2011)

    Article  Google Scholar 

  26. S. Kumar, R. Prakash et al., Surface and spectral studies of Eu3+ doped α-Al2O3 synthesized via solution combustion synthesis. Adv. Powder Technol. 26, 1263–1268 (2015)

    Article  Google Scholar 

  27. S. Cai, S. Rashkeev et al., Phase transformation mechanism between gamma- and theta-alumina. Phys. Rev. B 67, 2209–2219 (2003)

    Article  Google Scholar 

  28. P.A. Badkar, J.E.Bailey, The mechanism of simultaneous sintering and phase transformation in alumina. J. Mater. Sci. 11, 1794–1806 (1976)

    Article  ADS  Google Scholar 

  29. M. Nguefack, A.F. Popa et al., Preparation of alumina through a sol–gel process. synthesis, characterization, thermal evolution and model of intermediate boehmite. Phys. Chem. Chem. Phys. 5, 4279–4289 (2003)

    Article  Google Scholar 

  30. M. Digne, P. Sautet et al., Structure and stability of aluminum hydroxides: a theoretical study. J. Phys. Chem. B 106, 5155–5162 (2002)

    Article  Google Scholar 

  31. A. Roy, A.K. Sood, Phonons and fractons in sol–gel alumina: Raman study. Pramana 44, 201–209 (1995)

    Article  ADS  Google Scholar 

  32. J. Fankhänel, D. Silbernagl et al., Mechanical properties of boehmite evaluated by atomic force microscopy experiments and molecular dynamic finite element simulations, J. Nanomater. 2016, 1–13 (2016)

    Article  Google Scholar 

  33. C.J. Doss, R. Zallen, Raman studies of sol–gel alumina: finite-size effects in nanocrystalline AlO(OH). Phys. Rev. B 48, 15626–15637 (1993)

    Article  ADS  Google Scholar 

  34. C. Nico, R. Fernandes et al., Eu3+ luminescence in aluminophosphate glasses. J. Lumin. 145, 582–587 (2014)

    Article  Google Scholar 

  35. Z.N. Utegulov, M.A. Eastman et al., Structural characterization of Eu2O3–MgO–Na2O–Al2O3–SiO2 glasses with varying Eu2O3 content: Raman and NMR studies. J. Non-Cryst. Solids 315, 43–53 (2003)

    Article  ADS  Google Scholar 

  36. P. Alain, B. Piriou, High temperature Raman scattering and phase transition in EuAlO3. Solid State Commun. 17, 35–39 (1975)

    Article  ADS  Google Scholar 

  37. R. Chakrabarti, M. Das et al., Emission analysis of Eu3+:CaO–La2O3–B2O3 glass. J. Non-Cryst. Solids 353, 1422–1426 (2007)

    Article  ADS  Google Scholar 

  38. E.W.J.L. Oomenm, A.M.A. van Dongen, Europium (III) in oxide glasses: dependence of the emission spectrum upon glass composition. J. Non-Cryst. Solids 111, 205 (1989)

    Article  ADS  Google Scholar 

  39. H.G. Giesber, J. Ballato et al., Synthesis and characterization of optically nonlinear and light emitting Lanthanide borates. Inform. Sci. 149, 61–68 (2003)

    Article  Google Scholar 

  40. L.G.V. Uitert, L.F. Johnson, Energy transfer between rare-earth ion. J. Lumin 4, 3514–3522 (1966)

    Google Scholar 

Download references

Acknowledgements

This work was supported by China Scholarship Council (no. 201506955051) and National Natural Science Foundation of China (nos. 51772224 and 51372179). The authors would like to thank Professor Lothar Wondraczek and Doctor Lenka Müller at University of Jena for their support of preliminary work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peijing Tian or Weihong Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, P., Zhu, S., Yuan, J. et al. Crystallization and luminescence properties of various Eu3+ content doped Al2O3 prepared by sol–gel method. Appl. Phys. A 124, 780 (2018). https://doi.org/10.1007/s00339-018-2167-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2167-3

Navigation