Skip to main content
Log in

Effect of N2 flow rate on electromagnetic interference shielding effectiveness of TiNx films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

TiNx films with different nitrogen contents were fabricated using direct current reactive magnetron sputtering. Influence of N2 flow rate on the resistivity and electromagnetic interference (EMI) shielding effectiveness (SE) of TiNx films was studied. The EMI SE of TiNx films was found to be related with the resistivity. With the rise of N2 flow rate, the resistivity of TiNx films increased, while the EMI SE decreased. When the N2 flow rate was 1 sccm, the EMI SE of TiNx films was over 20 dB with the thickness of 1.47 µm, which was much smaller than the thickness of the presently known EMI-shielding materials. The results indicated that TiNx films could be applied as ultrathin thickness, lightweight, and design flexibility shielding materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.T. Hsiao, C.C.M. Ma, H.W. Tien, W.H. Liao, Y.S. Wang, S.M. Li, Y.C. Huang, Using a non-covalent modification to prepare a high electromagnetic interference shielding performance graphene nanosheet/water-borne polyurethane composite. Carbon 60, 57–66 (2013)

    Article  Google Scholar 

  2. P.J. Bora, K.J. Vinoy, P.C. Ramamurthy, G. Kishore, Madras, Electromagnetic interference shielding effectiveness of polyaniline-nickel oxide coated cenosphere composite film. Compos. Commun. 4, 37–42 (2017)

    Article  Google Scholar 

  3. K. Sabira, M.P. Jayakrishnan, P. Saheeda, S. Jayalekshmi, On the absorption dominated EMI shielding effects in free standing and flexible films of poly (vinylidene fluoride)/graphene nanocomposite. Eur. Polym. J. 99, 437–444 (2018)

    Article  Google Scholar 

  4. H.J. Oh, V.D. Dao, H.S. Choi, Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction. Appl. Surf. Sci. 435, 7–15 (2018)

    Article  ADS  Google Scholar 

  5. Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, Y. Chen, Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27, 2049–2053 (2015)

    Article  Google Scholar 

  6. Z. Zeng, H. Jin, M. Chen, W. Li, L. Zhou, Z. Zhang, Lightweight and anisotropic porous MWCNT/WPU composites for ultrahigh performance electromagnetic interference shielding. Adv. Funct. Mater. 26, 303–310 (2016)

    Article  Google Scholar 

  7. Y. Qing, Y. Mu, Y. Zhou, F. Luo, D. Zhu, W. Zhou, Multiwalled carbon nanotubes–BaTiO3/silica composites with high complex permittivity and improved electromagnetic interference shielding at elevated temperature. J. Eur. Ceram. Soc. 34, 2229–2237 (2014)

    Article  Google Scholar 

  8. S. Frackowiak, J. Ludwiczak, K. Leluk, K. Orzechowski, M. Kozlowski, Foamed poly (lactic acid) composites with carbonaceous fillers for electromagnetic shielding. Mater. Des. 65, 749–756 (2015)

    Article  Google Scholar 

  9. H.B. Zhang, W.G. Zheng, Q. Yan, Z.G. Jiang, Z.Z. Yu, The effect of surface chemistry of graphene on rheological and electrical properties of polymethylmethacrylate composites. Carbon 50, 5117–5125 (2012)

    Article  Google Scholar 

  10. R. Mohan, S. Varma, M. Faisal, S. Jayalekshmi, Polyaniline/graphene hybrid film as an effective broadband electromagnetic shield. RSC Adv. 5, 5917–5923 (2014)

    Article  Google Scholar 

  11. S. Kwon, R. Ma, U. Kim, H.R. Choi, S. Baik, Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon 68, 118–124 (2014)

    Article  Google Scholar 

  12. R.R. Mohan, S.J. Varma, J. Sankaran, Impressive electromagnetic shielding effects exhibited by highly ordered, micrometer thick polyaniline films. Appl. Phys. Lett. 108, 7–20466 (2016)

    Article  Google Scholar 

  13. D.D.L. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39, 279–285 (2001)

    Article  Google Scholar 

  14. C. Xia, H. Ren, S.Q. Shi, H. Zhang, J. Cheng, L. Cai, K. Chen, H.S. Tan, Natural fiber composites with EMI shielding function fabricated using VARTM and Cu film magnetron sputtering. Appl. Surf. Sci. 362, 335–340 (2016)

    Article  ADS  Google Scholar 

  15. K. Jagatheesan, A. Ramasamy, A. Das, A. Basu, Electromagnetic shielding behaviour of conductive filler composites and conductive fabrics—a review. Indian J. Fibre Text. 39, 329–342 (2014)

    Google Scholar 

  16. G.S. Kumar, D. Vishnupriya, A. Joshi, S. Datar, T.U. Patro, Electromagnetic interference shielding in 1–18 GHz frequency and electrical property correlations in poly (vinylidene fluoride)-multi-walled carbon nanotube composites. Phys. Chem. Chem. Phys. 17, 20347–20360 (2015)

    Article  Google Scholar 

  17. S. Hsiao, C. Ma, W. Liao, Y. Wang, S. Li, Y. Huang, R. Yang, W. Liang, Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl. Mater. Inter. 6, 10667–10678 (2014)

    Article  Google Scholar 

  18. J.M. Thomassin, C. Jérôme, T. Pardoen, C. Bailly, I. Huynen, C. Detrembleur, Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R 74, 211–232 (2013)

    Article  Google Scholar 

  19. L.L. Wang, B.K. Tay, K.Y. See, Z. Sun, L.K. Tan, D. Lua, Electromagnetic interference shielding effectiveness of carbon-based materials prepared by screen printing. Carbon 47, 1905–1910 (2009)

    Article  Google Scholar 

  20. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, P.C. Eklund, Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6, 1141–1145 (2006)

    Article  ADS  Google Scholar 

  21. V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials. Nanoscale Res. Lett. 6, 137 (2011)

    Article  ADS  Google Scholar 

  22. V. Eswaraiah, V. Sankaranarayanan, S. Ramaprabhu, Functionalized graphene—PVDF foam composites for EMI shielding, Macromol. Mater. Eng. 296, 894–898 (2011)

    Article  Google Scholar 

  23. N. Joseph, M.T. Sebastian, Electromagnetic interference shielding nature of PVDF-carbonyl iron composites. Mater. Lett. 90, 64–67 (2013)

    Article  Google Scholar 

  24. Q. Wen, W. Zhou, J. Su, Y. Qing, F. Luo, D. Zhu, High performance electromagnetic interference shielding of lamellar MoSi2/glass composite coatings by plasma spraying. J. Alloys Compd. 666, 359–365 (2016)

    Article  Google Scholar 

  25. A.P. Singh, M. Mishra, D.P. Hashim, T.N. Narayanan, M.G. Hahm, P. Kumar, J. Dwivedi, G. Kedawat, A. Gupta, B.P. Singh, Probing the engineered sandwich network of vertically aligned carbon nanotube—reduced graphene oxide composites for high performance electromagnetic interference shielding applications. Carbon 85, 79–88 (2015)

    Article  Google Scholar 

  26. Z. Chen, C. Xu, C. Ma, W. Ren, H.M. Cheng, Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25, 1296–1300 (2013)

    Article  Google Scholar 

  27. E. Penilla, J. Wang, Pressure and temperature effects on stoichiometry and microstructure of nitrogen-rich TiN thin films synthesized via reactive magnetron DC-sputtering. J. Nanomater. 2008(5), 145–152 (2014)

    Google Scholar 

  28. W.J. Chou, G.P. Yu, J.H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates. Surf. Coat. Technol. 149, 7–13 (2002)

    Article  Google Scholar 

  29. G.L. Zhao, T.B. Zhang, T. Zhang, J.X. Wang, G.R. Han, Electrical and optical properties of titanium nitride coatings prepared by atmospheric pressure chemical vapor deposition. J. Non-Cryst. Solids 354, 1272–1275 (2008)

    Article  ADS  Google Scholar 

  30. F. Vaz, J. Ferreira, E. Ribeiro, L. Rebouta, S. Lanceros-Mendez, J.A. Mendes, E. Alves, P. Goudeau, J.P. Riviere, F. Ribeiro, I. Moutinho, K. Pischow, J. de Rijk, Influence of nitrogen content on the structural, mechanical and electrical properties of TiN thin films. Surf. Coat. Technol. 191, 317–323 (2005)

    Article  Google Scholar 

  31. D.Q. Yu, H.P. Xie, L. Wang, Investigation of interfacial microstructure and wetting property of newly developed Sn–Zn–Cu solders with Cu substrate. J. Alloys Compd. 385, 119–125 (2004)

    Article  Google Scholar 

  32. F.Y. Hung, T.S. Lui, H.C. Liao, A study of nano-sized surface coating on LiMn2O4 materials. Appl. Surf. Sci. 253, 7443–7448 (2007)

    Article  ADS  Google Scholar 

  33. N. Arshi, J.Q. Lu, Y.K. Joo, C.G. Lee, J.H. Yoon, F. Ahmed, Influence of nitrogen gas flow rate on the structural, morphological and electrical properties of sputtered TiN films. J. Mater. Sci. Mater. Electron. 24, 1194–1202 (2013)

    Article  Google Scholar 

  34. H.L. Liang, J. Xu, D.Y. Zhou, X. Sun, S.C. Chu, Y.Z. Bai, Thickness dependent microstructural and electrical properties of TiN thin films prepared by DC reactive magnetron sputtering. Ceram. Int. 42, 2642–2647 (2016)

    Article  Google Scholar 

  35. U.C. Oh, J.H. Je, Effects of strain-energy on the preferred orientation of TiN thin-films. J. Appl. Phys. 74, 1692–1696 (1993)

    Article  ADS  Google Scholar 

  36. J.L. Murray, Phase Diagrams of Binary Titanium Alloys (ASM International, Ohio, 1987)

    Google Scholar 

  37. B.E. Warren, X-ray Diffraction. (Addison Wesley Publishing Co., London, 1969)

    Google Scholar 

  38. X. Li, L. Zhang, X. Yin, L. Feng, Q. Li, Effect of chemical vapor infiltration of SiC on the mechanical and electromagnetic properties of SiN–SiC ceramic. Scripta Mater. 63, 657–660 (2010)

    Article  Google Scholar 

  39. F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, H.S. Man, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016)

    Article  ADS  Google Scholar 

  40. X. Zhang, X. Zhang, M. Yang, S. Yang, H. Wu, S. Guo, Y. Wang, Ordered multilayer film of (graphene oxide/polymer and boron nitride/polymer) nanocomposites: an ideal EMI shielding material with excellent electrical insulation and high thermal conductivity. Compos. Sci. Technol. 136, 104–110 (2016)

    Article  Google Scholar 

  41. Y.Y. And, M.C. Gupta, K.L.D. And, R.W. Lawrence, Novel carbon nanotube—polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005)

    Article  ADS  Google Scholar 

  42. S. Maiti, N.K. Shrivastava, S. Suin, B.B. Khatua, Polystyrene/MWCNT/graphite nanoplate nanocomposites: efficient electromagnetic interference shielding material through graphite nanoplate-MWCNT-graphite nanoplate networking. ACS Appl. Mater. Inter. 5, 4712–4724 (2013)

    Article  Google Scholar 

  43. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47, 922–925 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundamental Research Funds for the Central Universities (Grant No. 3102017ZY050), and State Key Laboratory of Solidification Processing (NWPU), China (Grant No. KP201604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linlin Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, L., Luo, F., Qing, Y. et al. Effect of N2 flow rate on electromagnetic interference shielding effectiveness of TiNx films. Appl. Phys. A 124, 721 (2018). https://doi.org/10.1007/s00339-018-2140-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2140-1

Navigation