Skip to main content
Log in

Influence of thickness on the resistivity and infrared emissivity of TiN films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

TiN films with low infrared emissivity were obtained using reactive magnetron sputtering. The influence of deposited thickness (309, 645, 1248, and 2011 nm) on the preferred orientation, morphology, structure, resistivity, and infrared emissivity of TiN films was studied. The resistivity and infrared emissivity of TiN films could be altered by varying the deposited thickness. Film with thickness of 645 nm showed (200) preferred orientation. Due to internal stress, the preferred orientation converted to (111) and (220) plane when the film thicknesses were 1248 and 2011 nm. The crystallization was poor and the grain size was small when the deposited thickness was 309 nm, resulting in high resistivity and infrared emissivity. The crystalline grains with preferred orientation of (200) plane of TiN films showed a closely arranged cellular morphology, while the crystalline grain morphology with (111) and (220) preferred orientation showed a mixture structure of triangular cone and prism. TiN film with (200) preferred orientation had higher density and smaller roughness than that with (111) and (220) preferred orientation, which was beneficial for low-resistivity and low-emissivity properties. It is concluded that TiN film with (200) preferred orientation has lower resistivity and infrared emissivity than that with (111) and (220) preferred orientation. When the deposited thickness of TiN films reaches 1248 nm, the thickness inhibition occurred and the change of the resistivity and infrared emissivity was not obvious.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  1. Z.B. Huang, W.C. Zhou, X.F. Tang, Effects of annealing time on infrared emissivity of the Pt film grown on Ni alloy. Appl. Surf. Sci. 256, 2025–2030 (2010). https://doi.org/10.1016/j.apsusc.2009.09.042

    Article  CAS  Google Scholar 

  2. Z.B. Huang, W.C. Zhou, X.F. Tang, F. Luo, D.M. Zhu, High-temperature application of the low-emissivity Au/Ni films on alloys. Appl. Surf. Sci. 256, 6893–6898 (2010). https://doi.org/10.1016/j.apsusc.2010.04.107

    Article  CAS  Google Scholar 

  3. M. Zhang, G. Yang, L. Zhang, J.H. Zhang, Yin et al., Application of ZrB2 thin film as a low emissivity film at high temperature. Appl. Surf. Sci. 527, 146763 (2020). https://doi.org/10.1016/j.apsusc.2020.146763

    Article  CAS  Google Scholar 

  4. K.W. Sun, X.F. Tang, C.L. Tang, Yang, D. Yang, Jin, Preparation and performance of low-emissivity Al-doped ZnO films for energy-saving glass. Ceram. Int. 44, 19597–19602 (2018). https://doi.org/10.1016/j.ceramint.2018.07.207

    Article  CAS  Google Scholar 

  5. K.W. Sun, W.C. Zhou, X.F. Tang, F. Luo, Application of indium tin oxide (ITO) thin film as a low emissivity film on Ni-based alloy at high temperature. Infrared Phys.Techn. 78, 156–161 (2010). https://doi.org/10.1016/j.infrared.2016.07.021

    Article  CAS  Google Scholar 

  6. M.B. Cinali, O.D. Coskun, Optimization of physical properties of sputtered silver films by change of deposition power for low emissivity applications. J. Alloys Compd. 485, 92–100 (2019). https://doi.org/10.1016/j.jallcom.2020.157073

    Article  CAS  Google Scholar 

  7. S. Hanauer, C. Celle, C. Crivello, H. Szambolics, D. Munoz-Rojas, D. Bellet, J.P. Simonato, Transparent and mechanically resistant silver-nanowire-based low-emissivity coatings. ACS Appl. Mater. Inter. 13, 21971–21978 (2021). https://doi.org/10.1021/acsami.1c02689

    Article  CAS  Google Scholar 

  8. X.H. Bu, Y.M. Zhou, M. He, Z.J. Chen, T. Zhang, Optically active SiO2 /TiO2 /polyacetylene multilayered nanospheres: preparation, characterization, and application for low infrared emissivity. Appl. Surf. Sci. 288, 444–451 (2014). https://doi.org/10.1016/j.apsusc.2013.10.053

    Article  CAS  Google Scholar 

  9. L.P. Chen, Z.Y. Ren, X.M. Liu, K. Wang, Q. Wang, Infrared-visible compatible stealth based on Al-SiO2 nanoparticle composite film. Opt. Commun. 482, 456–475 (2021). https://doi.org/10.1016/j.optcom.2020.126608

    Article  CAS  Google Scholar 

  10. A.F. Zhu, H.L. Xing, Q. Fan, X.L. Ji, P. Yang, Conductive polyaniline coated on aluminum substrate as bi-functional materials with high-performance microwave absorption and low infrared emissivity. Synth. Met. 271, 1–8 (2021). https://doi.org/10.1016/j.synthmet.2020.116640

    Article  CAS  Google Scholar 

  11. R. Alvarez, J.C. González, J.P. Espinós, A.R. González-Elipe, A. Cueva, F. Villuendas, Growth of silver on ZnO and SnO2 thin films intended for low emissivity applications. Appl. Surf. Sci. 268, 407–515 (2013). https://doi.org/10.1016/j.apsusc.2012.12.156

    Article  CAS  Google Scholar 

  12. L. Hultman, Thermal stability of nitride thin films. Vacuum 57, 1–30 (2000). https://doi.org/10.1016/S0042-207X(00)00143-3

    Article  CAS  Google Scholar 

  13. L.J. Meng, A. Azevedo, M.P. Santos, Deposition and properties of titanium nitride films produced by dc reactive magnetron sputtering. Vacuum. 46, 233–239 (1995). https://doi.org/10.1016/0042-207X(94)00052-2

    Article  CAS  Google Scholar 

  14. J.E. Sundgren, Structure and properties of TiN coatings. Thin Solid Films 128, 21–44 (1985). https://doi.org/10.1016/0040-6090(85)90333-5

    Article  CAS  Google Scholar 

  15. F. Pinakidou, Influence of composition and growth conditions on TiN nanocrystallite formation in TiN-metal films. Thin Solid Films. 727, 138645 (2021). https://doi.org/10.1016/j.tsf.2021.138645

    Article  CAS  Google Scholar 

  16. Z.H. Xu, Q.H. Zhang, L. Luo, Y. Liu, J. Wan, Microstructure and corrosion resistance of TiN/TiO nano-composite film on AZ31 magnesium alloy 2. Surf Coatings Technol 406, 126681 (2021). https://doi.org/10.1016/j.surfcoat.2020.126681

    Article  CAS  Google Scholar 

  17. O. Comakli, Improved structural, mechanical, corrosion and tribocorrosion properties of Ti45Nb alloys by TiN, TiAlN monolayers, and TiAlN/TiN multilayer ceramic films. Ceram. Int. 47, 4149–4415 (2020). https://doi.org/10.1016/j.ceramint.2020.09.292

    Article  CAS  Google Scholar 

  18. N. Wolff, P. Jordt, J. Jetter, H. Vogt, A. Lotnyk, K. Seemann, S. Ulrich, E. Quandt, B.M. Murphy, L. Kienle, Nanostabilization of tetragonal distorted FeCo variants in ultra-thin FeCo/TiN multilayer films. Zeitschriftenaufsatz 172, 110871 (2021). https://doi.org/10.1016/j.matchar.2021.110871

    Article  CAS  Google Scholar 

  19. T. Meydan, H. Kockar, The influence of production conditions on the magnetic properties of sputtered and laser deposited thin films. J. Optoelectron. Adv. Mater. 6(2), 633–636 (2004)

    CAS  Google Scholar 

  20. H. Kockar, T. Meydan, The rotation and clamping effect on the magnetic properties of iron films deposited onto a rotating substrate. Phys. B 321, 124–128 (2002). https://doi.org/10.1016/S0921-4526(02)00836-0

    Article  CAS  Google Scholar 

  21. H. Kockar, Rotation speed-induced uniaxial in-plane anisotropy in thin films deposited onto a rotating substrate. J. Supercond. 17, 531–536 (2004). https://doi.org/10.1023/B:JOSC.0000041792.93118.2b

    Article  CAS  Google Scholar 

  22. H. Kockar, T. Meydan, Factors affecting magnetic properties of evaporated iron films. J. Magn. Magn. Mater. 242, 183–186 (2002). https://doi.org/10.1016/S0304-8853(01)01172-6

    Article  Google Scholar 

  23. S. Das, S. Guha, R. Ghadai, A. Sharma, Influence of nitrogen gas over microstructural, vibrational and mechanical properties of CVD titanium nitride (TiN) thin film coating. Ceram. Int. 47, 16809–16819 (2021). https://doi.org/10.1016/j.ceramint.2021.02.254

    Article  CAS  Google Scholar 

  24. N. Arshi, J. Lu, Y.K. Joo, C.G. Lee, J.H. Yoon, F. Ahmed, Study on structural, morphological and electrical properties of sputtered titanium nitride films under different argon gas flow. Mater. Chem. Phys. 134, 839–844 (2012). https://doi.org/10.1016/j.matchemphys.2012.03.078

    Article  CAS  Google Scholar 

  25. W.J. Chou, G.P. Yu, J.H. Huang, Mechanical properties of TiN thin film coatings on 304 stainless steel substrates. Surf. Coat. Technol. 149, 7–13 (2002). https://doi.org/10.1016/S0257-8972(01)01382-2

    Article  CAS  Google Scholar 

  26. J.H. Huang, S.L. Zou, W.W. Xiao, X.S. Liu, D.W. Tang, Sputtering parameters effect on microstructural parameters of TiN coating via the Williamson-Hall analysis. Mater. Res. Express. 7, 106402 (2020). https://doi.org/10.1088/2053-1591/abbd09

    Article  CAS  Google Scholar 

  27. Y.L. Jeyachandran, S.K. Narayandass, D. Mangalaraj, S. Areva, J.A. Mieluarski, Properties of titanium nitride films prepared by direct current magnetron sputtering. Mat.Sci.Eng.A-Struct. 445, 223–236 (2007). https://doi.org/10.1016/j.msea.2006.09.021

    Article  CAS  Google Scholar 

  28. L.L. Lu, F. Luo, Y.C. Qing, W.C. Zhou, D.M. Zhu, Study on the electromagnetic interference shielding effectiveness of TiN film. J. Mater. Sci. Mater. Electron. 29, 9052–9057 (2018). https://doi.org/10.1007/s10854-018-8931-5

    Article  CAS  Google Scholar 

  29. L.L. Lu, F. Luo, Z.B. Huang, W.C. Zhou, D.M. Zhu, Influence of the nitrogen flow rate on the infrared emissivity of TiNx films. Infrared Phys. Techn. 88, 144–148 (2018). https://doi.org/10.1016/j.infrared.2017.11.015

    Article  CAS  Google Scholar 

  30. W.M. Mao, X.M. Zhang, Quantitative analysis of texture of crystalline materials, 2nd edn. (Metallurgical Industry Press, Beijing, 1995), pp. 20–45

    Google Scholar 

  31. Y. Wang, W. Tang, L. Zhang, Crystalline size effects on texture coefficient, electrical and optical properties of sputter-deposited Ga-doped ZnO thin films. J. Mater. Sci. Technol. 31, 175–178 (2015). https://doi.org/10.1016/j.jmst.2014.11.009

    Article  CAS  Google Scholar 

  32. J. Xu, M. Gao, L.L. Lu, Y.L. Wang, X. Liu, Study on the resistivity and infrared emissivity of TiNx films at different sputtering power. Infrared Phys.Techn. 119, 103946 (2021). https://doi.org/10.1016/j.infrared.2021.103946

    Article  Google Scholar 

  33. G. Abadias, Stress and preferred orientation in nitride-based PVD coatings. Surf. Coatings Technol. 202, 2223–2235 (2008). https://doi.org/10.1016/j.surfcoat.2007.08.029

    Article  CAS  Google Scholar 

  34. Y. Xi, Y. Bai, K. Gao, X. Pang, H. Yang, L. Yan, A.A. Volinsky, In-situ stress gradient evolution and texture-dependent fracture of brittle ceramic thin films under external load. Ceram. Int. 44, 8176–8183 (2018). https://doi.org/10.1016/j.ceramint.2018.01.265

    Article  CAS  Google Scholar 

  35. J.P. Zhao, X. Wang, Z.Y. Chen, S.Q. Yang, T.S. Shi, X.H. Liu, Overall energy model for preferred growth of TiN films during filtered arc deposition. J. Phys. D. 30, 5–12 (1997). https://doi.org/10.1088/0022-3727/30/1/002

    Article  CAS  Google Scholar 

  36. Z.D. Guan, Z.T. Zhang, J.S. Jiao, Physical Properties of Inorganic Materials, 1st edn. (Tsinghua University Press, Beijing, 1992), pp. 451–467

    Google Scholar 

  37. Y.L. Shi, F.Y. Yan, Technologies and materials of film, 1st edn. (Chemical Industry Press, Beijing, 2015), pp. 370–380

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

CL: Conceptualization, methodology, writing—original draft preparation. QJ: Data curation, software. DJ: Supervision, validation.

Corresponding authors

Correspondence to Chunguang Li or Qinggong Jia.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest exited that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Jia, Q. & Jian, D. Influence of thickness on the resistivity and infrared emissivity of TiN films. J Mater Sci: Mater Electron 33, 3606–3616 (2022). https://doi.org/10.1007/s10854-021-07554-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-021-07554-2

Navigation