Skip to main content
Log in

Growth mechanism and optical properties of Ge nanocrystals embedded in a GeOx matrix

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Quantum confined germanium (Ge) nanocrystals were synthesized by a thermal annealing of germanium oxide thin films fabricated by an e-beam evaporation method. The nanocrystal formation, structure, and sizes upon annealing are evaluated by a combination of X-ray diffraction, transmission electron microscopy, and Raman spectroscopy studies. Spherical nanocrystals with sizes of around 3 nm and having both diamond and tetragonal phases are formed for an annealing temperature of 500 °C. The thermally induced transformation and phase separation of amorphous germanium oxide to nanocrystalline Ge is discussed using X-ray photoelectron spectroscopy. The bandgap agrees with the calculated values using effective mass approximation. The visible photoluminescence is investigated as a function of the annealing temperature. This disproportionation mechanism of germanium oxide films showing favorable optical properties suggests its scope for forming quantum confined Ge nanocrystals embedded in its amorphous matrix relevant for both electronic and optoelectronic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Maeda, Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: evidence in support of the quantum-confinement mechanism. Phys. Rev. B 51, 1658 (1995)

    Article  ADS  Google Scholar 

  2. Y. Maeda, N. Tsukamoto, Y. Yazawa, Y. Kanemitsu, Y. Masumoto, Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices. Appl. Phys. Lett. 59, 3168 (1991). https://doi.org/10.1063/1.105773

    Article  ADS  Google Scholar 

  3. Y. Kanemitsu, H. Uto, Y. Masumoto, Y. Maeda, On the origin of visible photoluminescence in nanometer-size Ge crystallites. Appl. Phys. Lett. 61, 2187 (1992). https://doi.org/10.1063/1.108290

    Article  ADS  Google Scholar 

  4. S. Guha, M.D. Pace, D.N. Dunn, I.L. Singer, Visible light emission from Si nanocrystals grown by ion implantation and subsequent annealing. Appl. Phys. Lett. 70, 1207 (1997). https://doi.org/10.1063/1.118275

    Article  ADS  Google Scholar 

  5. L. Yue, Y. He, Studies on room temperature characteristics and mechanism of visible luminescence of Ge-SiO2 thin films. J. Appl. Phys. 81, 2910 (1997). https://doi.org/10.1063/1.363963

    Article  ADS  Google Scholar 

  6. H. Ryo, Y. Masaki, T. Keiji, K. Kenji, O. Yukio, N. Hiroyuki, Preparation and properties of Ge microcrystals embedded in SiO2 glass films. Jpn. J. Appl. Phys. 29, 756 (1990)

    Article  Google Scholar 

  7. A.V. Kolobov, S.Q. Wei, W.S. Yan, H. Oyanagi, Y. Maeda, K. Tanaka, Formation of Ge nanocrystals embedded in a SiO2 matrix Transmission electron microscopy, X-ray absorption, and optical studies. Phys. Rev. B 67, 195314 (2003)

    Article  ADS  Google Scholar 

  8. S.K. Ray, K. Das, Luminescence characteristics of Ge nanocrystals embedded in SiO2 matrix. Opt. Mater. 27, 948 (2005)

    Article  ADS  Google Scholar 

  9. H. Yang, X. Yao, X. Wang et al., Sol–gel preparation and photoluminescence of size controlled germanium nanoparticles embedded in a SiO2 matrix. J. Phys. Chem. B 107, 13319 (2003)

    Article  Google Scholar 

  10. A. Singha, A. Roy, D. Kabiraj, D. Kanjilal, A hybrid model for the origin of photoluminescence from Ge nanocrystals in a SiO2 matrix. Semicond. Sci. Technol. 21, 1691 (2006)

    Article  ADS  Google Scholar 

  11. N.N. Ovsyuk, E.B. Gorokhov, V.V. Grishchenko, A.P. Shebanin, Low-frequency Raman scattering by small semiconductor particles. JETP Lett. 47, 298 (1988)

    ADS  Google Scholar 

  12. V.A. Volodin, D.V. Marin, H. Rinnert, M. Vergnat, Formation of Ge and GeSi nanocrystals in GeOx/SiO2 multilayers. J. Phys. D Appl. Phys. 46, 275305 (2013)

    Article  ADS  Google Scholar 

  13. E.B. Gorokhov, V.A. Volodin, D.V. Marin et al., Effect of quantum confinement on optical properties of Ge nanocrystals in GeO2 films. Semiconductors 39, 1168 (2005)

    Article  ADS  Google Scholar 

  14. M. Ardyanian, H. Rinnert, X. Devaux, M. Vergnat, Structure and photoluminescence properties of evaporated GeOx thin films. Appl. Phys. Lett. 89, 011902 (2006). https://doi.org/10.1063/1.2218830

    Article  ADS  Google Scholar 

  15. V.A. Volodin, E.B. Gorokhov, M.D. Efremov, D.V. Marin, D.A. Orekhov, Photoluminescence of GeO2 films containing germanium nanocrystals. J. Exp. Theor. Phys. Lett. 77, 411 (2003)

    Article  Google Scholar 

  16. J. Wu, Y. Sun, R. Zou et al., One-step aqueous solution synthesis of Ge nanocrystals from GeO2 powders. CrystEngComm 13, 3674 (2011). https://doi.org/10.1039/C1CE05191A

    Article  Google Scholar 

  17. C.J. Sahle, C. Sternemann, H. Conrad et al., Phase separation and nanocrystal formation in GeO. Appl. Phys. Lett. 95, 021910 (2009). https://doi.org/10.1063/1.3183581

    Article  ADS  Google Scholar 

  18. S.K. Wang, H.-G. Liu, A. Toriumi, Kinetic study of GeO disproportionation into a GeO2/Ge system using X-ray photoelectron spectroscopy. Appl. Phys. Lett. 101, 061907 (2012). https://doi.org/10.1063/1.4738892

    Article  ADS  Google Scholar 

  19. K. Vijayarangamuthu, S. Rath, D. Kabiraj et al., Ge nanocrystals embedded in a GeOx matrix formed by thermally annealing of Ge oxide film. J. Vac. Sci. Technol. A Vac. Surf. Films 27, 731 (2009). https://doi.org/10.1116/1.3155402

    Article  Google Scholar 

  20. S. Rath, D. Kabiraj, D.K. Avasthi et al., Evidence of nanostructure formation in Ge oxide by crystallization induced by swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B 263, 419 (2007). https://doi.org/10.1016/j.nimb.2007.07.018

    Article  ADS  Google Scholar 

  21. K. Vijayarangamuthu, C. Singh, D. Kabiraj, S. Rath, A spectroscopic ellispometric study of the tunability of the optical constants and thickness of GeOx films with swift heavy ions. J. Appl. Phys. 110, 063512 (2011). https://doi.org/10.1063/1.3638700

    Article  ADS  Google Scholar 

  22. P. Stampfli, K.H. Bennemann, Theory for the instability of the diamond structure of Si, Ge, and C induced by a dense electron-hole plasma. Phys. Rev. B 42, 7163 (1990)

    Article  ADS  Google Scholar 

  23. D. Schmeisser, R.D. Schnell, A. Bogen et al., Surface oxidation states of germanium. Surf. Sci. 172, 455 (1986). https://doi.org/10.1016/0039-6028(86)90767-3

    Article  ADS  Google Scholar 

  24. A. Molle, M.N.K. Bhuiyan, G. Tallarida, M. Fanciulli, In situ chemical and structural investigations of the oxidation of Ge(001) substrates by atomic oxygen. Appl. Phys. Lett. 89, 083504 (2006). https://doi.org/10.1063/1.2337543

    Article  ADS  Google Scholar 

  25. K. Prabhakaran, T. Ogino, Oxidation of Ge (100) and Ge(111) surfaces: an UPS and XPS study. Surf. Sci. 325, 263 (1995). https://doi.org/10.1016/0039-6028(94)00746-2

    Article  ADS  Google Scholar 

  26. V. Kapaklis, C. Politis, P. Poulopoulos, P. Schweiss, Photoluminescence from silicon nanoparticles prepared from bulk amorphous silicon monoxide by the disproportionation reaction. Appl. Phys. Lett. 87, 123114 (2005). https://doi.org/10.1063/1.2043246

    Article  ADS  Google Scholar 

  27. W. Zhang, S. Zhang, Y. Liu, T. Chen, Evolution of Si suboxides into Si nanocrystals during rapid thermal annealing as revealed by XPS and Raman studies. J. Cryst. Growth 311, 1296 (2009). https://doi.org/10.1016/j.jcrysgro.2008.12.038

    Article  ADS  Google Scholar 

  28. L. Skuja, K. Kajihara, J. Grube, H. Hosono (2014) Luminescence of non-bridging oxygen hole centers in crystalline SiO2. AIP Conf. Proc. 1624, 130. https://doi.org/10.1063/1.4900468

    Article  ADS  Google Scholar 

  29. L. Armelao, F. Heigl, P.-S.G. Kim, R.A. Rosenberg, T.Z. Regier, T.-K. Sham, Visible emission from GeO2 nanowires: site-specific insights via X-ray excited optical luminescence. J. Phys. Chem. C 116, 14163 (2012). https://doi.org/10.1021/jp3040743

    Article  Google Scholar 

Download references

Acknowledgements

K.V acknowledges Department of Science and Technology, India for the DST-Inspire Faculty Award (DST/INSPIRE/04/2015/002060). We acknowledge CIF, University of Delhi for characterization facilities.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vijayarangamuthu Kalimuthu or Shyama Rath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalimuthu, V., Kumar, P., Kumar, M. et al. Growth mechanism and optical properties of Ge nanocrystals embedded in a GeOx matrix. Appl. Phys. A 124, 712 (2018). https://doi.org/10.1007/s00339-018-2134-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2134-z

Navigation