Skip to main content
Log in

Structural, topological, electrical and luminescence properties of CZ-silicon (CZ-Si) irradiated by neutrons

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, the changes in the XRD, Raman, AFM, the substrate resistivity and Photoluminescence of the p-type CZ-silicon samples are studied before and after the high fluences of 1 MeV equivalent neutrons. After irradiation, the samples are annealed at different temperatures in Ar atmosphere. It was found that the lattice parameter increases with increase of neutron fluence, related to the increment of the defect content. Also, the increasing of the crystallinity was caused by the fluence and the annealing temperature. It was found that the roughness increases with the increase of the neutron fluence and decreases with increasing of the annealing temperature and assigned to the degree of material smoothing. The electrical studies show that, with high annealing temperature, the lowest value of the resistivity was experimentally observed with the increase of the neutron irradiation. Therefore, the phosphorus and lithium atoms could be useful as a donor in CZ-Si. It was shown that increasing of the neutron fluence, the PL intensity decreases with decreasing of oxygen defects in SiOx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. H. Herzer, F.G. Vieweg-Cutberlet: Neutron Transmutation Doping of Semiconductor Materials. In: Larrabee R.D. (ed) (New York: Plenum) p 151 (1984)

  2. N. Croitoru, R. Dahan, P.G. Rancoita, M. Rattaggi, G. Rossi, A. Seidman: Nucl Instrum Methods B 124, 542 (1997)

    Article  ADS  Google Scholar 

  3. B.G. Svensson, J.L. Lindstrom: J. Appl. Phys. 72(12), 5616 (1992)

    Article  ADS  Google Scholar 

  4. B.G. Svensson, M. Willander: J. Appl. Phys. 51(16), 225 (1987)

    Google Scholar 

  5. N. Croitoru et al: Study of Radiation (Neutron, γ-Ray, and Carbon-Iron) Effects on npn Bipolar Transistors. Papcomos submitted to world scientific, January 02

  6. C.A. Londos, D.N. Aliprantis, G. Antonaras, M.S. Potsidi, T. Angeletos: J. Appl. Phys. 145702 123 (2018)

    Google Scholar 

  7. K. Gill, G. Hall, B. MacEvoy: J.Appl. Phys 82, 126 (1997)

    Article  ADS  Google Scholar 

  8. N.E. Grant, V.P. Markevich, J. Mullins, A.R. Peaker, F. Rougieux, D. Macdonald: Phys. Status Sol. Rapid Res. Lett. (2016)

  9. Y. Wang, Z. Li, H. Tian: In: Proceedings of IAEA Technical Committee Meeting on Strategies to Enhance Utilization of Multipurpose Research Reactors, ASRR-V, Taejon, Korea, p. 853 (1996)

  10. M. Tanenbaum, A.D. Mills: J. Electrochem. Soc. 108, 171–176 (1961)

    Article  Google Scholar 

  11. G.F. Knoll: Radiation Detection and Measurement, Third edn (2000)

  12. H.J. Taylor, M. Goldhaber: Detection of nuclear disintegration in a photographic emulsion. Nature 135(3409), 341 (1935)

    Article  ADS  Google Scholar 

  13. H. Kitaguchi, H. Miyai, S. Izumi, A. Kaihara: Silicon semiconductor detectors for various nuclear radiations. IEEE Nucl. Sci. Symp. Med. Imaging Conf. 2:828–832 (1995)

    Google Scholar 

  14. H. Kitaguchi, H. Miyai, S. Izumi, A. Kaihara: Silicon semiconductor detectors (1996)

  15. L. Guerbous, M. Seraiche, O. Krachni: J. Lumin. 134, 165–173 (2013)

    Article  Google Scholar 

  16. I.F. Ferguson: Lattice contractions associated with the neutron irradiation of self-bonded silicon carbide. Philos. Mag. 16, 635 (1967)

    Article  ADS  Google Scholar 

  17. T.O. Baldwin, J.E. Thomas, J.K. Haldeman: J. Appl. Phys. 50, 37–48 (1979)

    Article  Google Scholar 

  18. Y. Liu, R. Pan, X. Zhang, J. Han, Q. Yuan, Y. Tian, Y. Yuan, F. Liu, Y. Wang, A.T. N’Diaye, E. Arenholz, X. Chen, Y. Sun, B. Song, S. Zhou: Phys. Rev. B 94, 195–204 (2016)

    Google Scholar 

  19. J.M. Meese: J. Nucl. Mater. 07/08 (1982)

  20. N. Osmani, A. Boucenna, A. Cheriet: IEEE J (2015). https://doi.org/10.1109/WSMEAP.7338207

    Article  Google Scholar 

  21. R.M. Fleming, C.H. Seager, D.V. Lang, P.J. Cooper, E. Bielejec, J.M. Campbell: J. Appl. Phys. 102, 043711 (2007)

    Article  ADS  Google Scholar 

  22. A.C. Joita, S.V. Nistor: Mater. Sci. Semicond. Process. 83, 1–11 (2018)

    Article  Google Scholar 

  23. D.N. Aliprantisa, G. Antonaras, T. Angeletos, E.N. Sgourou, A. Chroneos, C.A. Londos: Mater. Sci. Semicond. Process. 75, 283–287 (2018)

    Article  Google Scholar 

  24. M. Abbaci, O. Meglali, A. Saim, N. Osmani, N. Doghmane: Nucl. Instrum. Methods B 251, 167 (2006)

    Article  ADS  Google Scholar 

  25. H.J. Stein, R. Gereth: J. Appl. Phys. 39, 2890 (1968)

    Article  ADS  Google Scholar 

  26. S. Yang, W. Li, B. Cao, H. Zeng, W. Cai: J. Phys. Chem. C 115, 21056–22106 (2011)

    Article  Google Scholar 

  27. Q. Wei, G.W. Meng, X.H. An, Y.F. Hao, L.D. Zhang: Solid State Commun. 138(7), 325–330 (2006)

    Article  ADS  Google Scholar 

  28. L. Jin, J.B. Wang, G.Y. Cao, W.C.H. Choy: Phys. Lett. A 372(25), 4622–4626 (2008)

    Article  ADS  Google Scholar 

  29. X.C. Wu, W.H. Song, K.Y. Wang, T. Hu, B. Zhao, Y.P. Sun, J.J. Du: Chem. Phys. Lett. 336, 53–56, (2001)

    Article  ADS  Google Scholar 

  30. C. Itoh, T. Suzuki, N. Itoh: Phys. Rev. B 41, 3794–3799 (1989)

    Article  ADS  Google Scholar 

  31. G.W. Meng, X.S. Peng, Y.W. Wang, C.Z. Wang, X.F. Wang, L.D. Zhang: Appl. Phys. A Mater. Sci. Process. 76(1), 119–121 (2003)

    Article  ADS  Google Scholar 

  32. P.K. Giri, S. Bhattacharyya, R. Kesavamoorthy, B.K. Panigrahi, K.G.M. Nair: J. Nanosci. Nanotechnol. 9, 1–7 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

One of authors wishes to thank: A. Sari from CRNB, for XRD analysis, M. Moughari from CRNB, for annealing assistance and A. Cheriet from CRTSE for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadjet Osmani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osmani, N., Guerbous, L. & Boucenna, A. Structural, topological, electrical and luminescence properties of CZ-silicon (CZ-Si) irradiated by neutrons. Appl. Phys. A 124, 709 (2018). https://doi.org/10.1007/s00339-018-2128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2128-x

Navigation