Skip to main content
Log in

A comparative study of dielectric and ferroelectric properties of sol–gel-derived BaTiO3 bulk ceramics with fine and coarse grains

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Fine and coarse-grained BaTiO3 (BTO) ceramics were prepared by conventional sintering of sol–gel-derived BTO nanopowders at 1150 and 1350 °C, respectively. Based on characterization results, fine and coarse-grained BTO ceramics had an average grain size of about 1 and 12 µm, respectively. They exhibited a tetragonal structure with tetragonality (c/a ratio) of 1.0105. The dielectric properties of fine and coarse-grained BTO ceramics were measured in the frequency range of 100 Hz–10 MHz and temperature range of −45–180 °C. A dominant dielectric relaxation was observed at high frequency above 1 MHz for both BTO ceramics. Room-temperature dielectric constant of fine-grained BTO (1502) was greater than that of coarse-grained BTO (1082) at 1 kHz due to the grain size effect. For temperature dependence measurement, dielectric constant of fine-grained BTO was less sensitive with changing temperature at phase transition than coarse-grained BTO. Polarization–electric field (PE) loop of coarse-grained BTO at room temperature revealed a well-defined hysteresis loop, confirming its ferroelectric switching behavior. In contrast, a lossy hysteresis loop was found for fine-grained BTO owing to its high leakage current. Our results in this work provide a useful information and progress in the dielectric and ferroelectric properties of sol–gel-derived BTO bulk ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.H. Haertling, J. Am. Ceram. Soc. 82, 797 (1999)

    Article  Google Scholar 

  2. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G.A. Rossetti Jr., J. Rödel, Appl. Phys. Rev. 4, 041305 (2017)

    Article  ADS  Google Scholar 

  3. Q. Wang, F. Li, J. Phys. D Appl. Phys. 51, 255301 (2018)

    Article  ADS  Google Scholar 

  4. J. Yuk, T. Troczynski, Sens. Actuator B Chem. 94, 290 (2003)

    Article  Google Scholar 

  5. A. Koka, H.A. Sodano, Nat. Commun. 4, 2682 (2013)

    Article  ADS  Google Scholar 

  6. G. Panomsuwan, O. Takai, N. Saito, Appl. Phys. A 108, 337 (2012)

    Article  ADS  Google Scholar 

  7. Y. Tan, J. Zhang, Y. Wu, C. Wang, V. Koval, B. Shi, H. Ye, R. McKinnon, G. Viola, H. Yan, Sci. Rep. 5, 9953 (2015)

    Article  ADS  Google Scholar 

  8. H. Ghayour, M. Abdellahi, Powder Technol. 292, 84 (2016)

    Article  Google Scholar 

  9. W.R. Buessem, L.E. Cross, A.K. Goswami, J. Am. Ceram. Soc. 49, 33 (1966)

    Article  Google Scholar 

  10. K. Kinoshita, A. Yamaji, J. Appl. Phys. 47, 371 (1976)

    Article  ADS  Google Scholar 

  11. G. Arlt, D. Henning, G. De With, J. Appl. Phys. 58, 1619 (1985)

    Article  ADS  Google Scholar 

  12. T. Hoshina, K. Takizawa, J. Li, T. Kasama, H. Kakemoto, T. Tsurumi, Jpn. J. Appl. Phys. 47, 7607 (2008)

    Article  ADS  Google Scholar 

  13. L. Curecheriu, M.T. Buscaglia, V. Buscaglia, Z. Zhao, L. Mitoseriu, Appl. Phys. Lett. 97, 242909 (2010)

    Article  ADS  Google Scholar 

  14. Y. Huan, X. Wang, J. Fang, L. Li, J. Eur. Ceram. Soc. 34, 1445 (2014)

    Article  Google Scholar 

  15. U. Hasenkox, S. Hoffmann, R. Waser, J. Sol Gel Sci. Technol. 12, 67 (1998)

    Article  Google Scholar 

  16. P. Pinceloup, C. Courtois, A. Leriche, B. Thierry, J. Am. Ceram. Soc. 82, 3049 (1999)

    Article  Google Scholar 

  17. M.C. Cheung, H.L.W. Chan, C.L. Choy, J. Mater. Sci. 36, 381 (2001)

    Article  ADS  Google Scholar 

  18. P. Yu, B. Cui, Q. Shi, Mater. Sci. Eng. A 473, 34 (2008)

    Article  Google Scholar 

  19. A. Kareiva, S. Tautkus, R. Rapalaviciute, J.-E. Jørgensen, B. Lundtoft, J. Mater. Sci. 34, 4853 (1999)

    Article  ADS  Google Scholar 

  20. C. Lemoine, B. Gilbert, B. Michaux, J.-P. Pirard, A.J. Lecloux, J. Non-Cryst. Solid 175, 1 (1994)

    Article  ADS  Google Scholar 

  21. R. Kavian, A. Saidi, J. Alloy. Compd. 468, 528 (2009)

    Article  Google Scholar 

  22. Y. Hao, X. Wang, H. Zhang, L. Guo, L. Li, J. Sol Gel Sci. Technol. 67, 182 (2013)

    Article  Google Scholar 

  23. Y.T. Wu, X.F. Wang, C.L. Yu, E.Y. Li, Mater. Manuf. Process. 27, 1329 (2011)

    Article  Google Scholar 

  24. H. Kumazawa, K. Masuda, Thin Solid Films 353, 144 (1999)

    Article  ADS  Google Scholar 

  25. M. Manso-Silván, L. Fuentes-Cobas, R.J. Martín-Palma, M. Hernández-Vélez, J.M. Martínez-Duart, Surf. Coat. Technol. 151–152, 118 (2002)

    Article  Google Scholar 

  26. S. Song, J. Zhai, X. Yao, Mater. Sci. Eng. B 145, 28 (2007)

    Article  Google Scholar 

  27. R. Ashiri, A. Nemati, M.S. Ghamsari, Ceram. Int. 40, 8613 (2014)

    Article  Google Scholar 

  28. X. Li, W.-H. Shih, J. Am. Ceram. Soc. 80, 2844 (1997)

    Article  Google Scholar 

  29. T. Yamamoto, H. Niori, H. Moriwake, Jpn. J. Appl. Phys. 39, 5683 (2000)

    Article  ADS  Google Scholar 

  30. K.-C. huang, T.-C. Huang, W.-F. Hsieh, Inorg. Chem. 48, 9180 (2009)

    Article  Google Scholar 

  31. H. Maiwa, J. Ceram. Soc. Jpn. 121, 655 (2013)

    Article  Google Scholar 

  32. B.W. Lee, K.H. Auh, J. Mater. Res. 10, 1418 (1995)

    Article  ADS  Google Scholar 

  33. H.B. Sharma, R.P. Tandon, A. Mansingh, R. Rup, J. Mater. Sci. Lett. 12, 1795 (1993)

    Article  Google Scholar 

  34. H.B. Sharma, H.N.K. Sarma, A. Mansingh, J. Mater. Sci. 34, 1385 (1999)

    Article  ADS  Google Scholar 

  35. R.P.S.M. Lobo, N.D.S. Mohallem, R.L. Moreira, J. Am. Ceram. Soc. 78, 1343 (1995)

    Article  Google Scholar 

  36. S.B. Deshpande, P.D. Godbole, Y.B. Khollam, H.S. Potdar, J. Electroceram. 15, 103 (2005)

    Article  Google Scholar 

  37. W. Li, Z. Xu, R. Chu, P. Fu, J. Hao, J. Alloys Compd. 482, 137 (2009)

    Article  Google Scholar 

  38. Ch.S. Devi, M. Vithal, G.S. Kumar, G. Prasad, J. Mater. Sci. Mater. Electron. 22, 1855 (2011)

    Article  Google Scholar 

  39. A. Mahmood, A. Naeem, Y. Iqbal, T. Mahmood, A. Ullah, J. Mater. Sci. Mater. Electron. 26, 5635 (2015)

    Article  Google Scholar 

  40. P. Yu, X. Wang, B. Cui, Scr. Mater. 57, 623 (2007)

    Article  Google Scholar 

  41. B. Cui, P. Yu, X. Wang, J. Alloys Compd. 459, 589 (2008)

    Article  Google Scholar 

  42. J.-H. Park, B.-K. Kim, J.G. Park, I.-T. Kim, H.-J. Je, Y. Kim, S.J. Park, Ferroelctrics 230, 151 (1999)

    Article  Google Scholar 

  43. B. Dhanalakshmi, K. Pratap, B. ParvatheeswaraRao, P.S.V. Subba Rao, J. Alloys Compd. 675, 193 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Kasetsart University Research and Development Institute (KURDI) and Research Grant for New Scholar from Thailand Research Fund (MRG-6180095).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gasidit Panomsuwan or Hathaikarn Manuspiya.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 117 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panomsuwan, G., Manuspiya, H. A comparative study of dielectric and ferroelectric properties of sol–gel-derived BaTiO3 bulk ceramics with fine and coarse grains. Appl. Phys. A 124, 713 (2018). https://doi.org/10.1007/s00339-018-2126-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2126-z

Navigation