Skip to main content
Log in

Magnetomechanical behavior of Tb0.2Dy0.8−xPrx(Fe0.8Co0.2)1.93/epoxy pseudo-1–3 particulate composites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The grain texture-oriented Tb0.2Dy0.8−xPrx(Fe0.8Co0.2)1.93 (0 ≤ x ≤ 0.30) pseudo 1–3 particulate composites are fabricated by integrating alloy particles embedded in an epoxy matrix with the presence of a magnetic field. The structural and quasi-static magnetomechanical properties are investigated in comparison with their monolithic alloys and 0–3 type particulate composites. The <100>-oriented 1–3 type composites for x ≤ 0.10 and <110>-oriented one for x ≥ 0.25 are formed. The 1–3 composite shows the enhanced and reduced magnetostriction effects for x ≥ 0.25 and x ≤ 0.10, respectively, which can be principally ascribed to the formation of <uvw>-texture-oriented structure in 1–3 composite and the anisotropic nature in magnetostriction coefficients (λ111 and λ100) of the embedded alloy particles. The 1–3 type Tb0.2Dy0.55Pr0.25(Fe0.8Co0.2)1.93 composite demonstrates the enhanced magnetomechanical properties, i.e., a high piezomagnetic coefficient (d33 ~ 1.8 nm/A at 80 kA/m) and a large low-field longitudinal magnetostriction (λ|| ~ 110 ppm at 80 kA/m), which are in excess of 80% its mother alloy values, even though it only contains 30 vol% alloy particles. These attractive magnetomechanical properties, together with the containing low-cost light rare-earth Pr for 25 at.% with insulating epoxy matrix, could make it technological interest for the field of Pr-containing magnetostrictive materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A.E. Clark, Magnetostrictive rare earth-Fe2 compounds, in Ferromagnetic Materials, vol. 1, ed. by E.P. Wohlfarth (North-Holland, Amsterdam, 1980), pp. 531–589

    Google Scholar 

  2. G. Engdahl, Handbook of Giant Magnetostrictive Materials (Academic Press, San Diego, 2000)

    Google Scholar 

  3. R. Elhajjar, C.T. Law, A. Pegoretti, Magnetostrictive polymer composites: recent advances in materials, structures and properties. Prog. Mater Sci. 97, 204 (2018)

    Article  Google Scholar 

  4. L. Sandlund, M. Fahlander, T. Cedell, A.E. Clark, J.B. Restorff, M. Wun-Fogle, Magnetostriction, elastic moduli, and coupling factors of composite Terfenol-D. J. Appl. Phys. 75, 5656 (1994)

    Article  ADS  Google Scholar 

  5. G. Altin, K.K. Ho, C.P. Henry, G.P. Carman, Static properties of crystallographically aligned Terfenol-D/polymer composites. J. Appl. Phys. 101, 033537 (2007)

    Article  ADS  Google Scholar 

  6. H. Meng, T.L. Zhang, C.B. Jiang, H.B. Xu, Grain-<111>-oriented anisotropy in the bonded giant magnetostrictive material, Appl. Phys. Lett. 96 (2010) 102501.

    Article  ADS  Google Scholar 

  7. S.W. Or, W.Y. Wong, Dynamic magnetomechanical properties of Sm0.88Dy0.12Fe1.93/epoxy composites. J. Magn. Magn. Mater. 304, e439 (2006)

    Article  ADS  Google Scholar 

  8. T. Dippong, O. Cadar, E.A. Levei, I.G. Deac, L. Diamandescu, L.B. Tudoran, Influence of cobalt ferrite content on the structure and magnetic properties of (CoFe2O4)x(SiO2-PVA)100–x nanocomposites, Ceram. Int. 44, 7891 (2018)

    Google Scholar 

  9. T. Dippong, O. Cadar, E.A. Levei, C. Leostean, L.B. Tudoran, Effect of annealing on the structure and magnetic properties of CoFe2O4:SiO2 nanocomposites. Ceram. Int. 43, 9145 (2017)

    Article  Google Scholar 

  10. P. Rajasekhar, G. Markandeyulu, Magnetostriction and spin reorientation studies on Sm0.9–xNdxPr0.1Fe1.93 (x = 0, 0.12, 0.2, 0.24, 0.32, 0.36) compounds. J. Magn. Magn. Mater. 448, 82 (2018)

    Article  ADS  Google Scholar 

  11. X.K. Lv, S.W. Or, W. Liu, X.H. Liu, Z.D. Zhang, Structural, magnetic, and magnetostrictive properties of Laves (Tb0.3Dy0.7)1–xPrxFe1.55 (0 ≤ x ≤ 0.40) alloys. J. Alloys Compd. 476, 24 (2009)

    Article  Google Scholar 

  12. Y.G. Shi, C.C. Hu, J.Y. Fan, D.N. Shi, L.Y. Lv, S.L. Tang, Synthesis and magnetostrictive properties of Pr(Fe1.95B0.05)1.93 bulk nanocrystalline alloy. Appl. Phys. Lett. 101, 192405 (2012)

    Article  ADS  Google Scholar 

  13. X.H. Song, J.J. Liu, S.H. Wei, X.Y. Zhu, F. Li, Z.R. Zhang, P.Z. Si, W.J. Ren, Enhanced magnetoelastic effect in Laves (Tb,Dy)Fe2 alloys with the joint introduction of Pr and Nd. Appl. Phys. A. 122, 564 (2016)

    Article  ADS  Google Scholar 

  14. F. Li, J.J. Liu, X.Y. Zhu, W.C. Shen, L.L. Lin, J. Du, P.Z. Si, Composition anisotropy compensation and magnetostriction of Co-doped Laves compounds Tb0.2Dy0.8–xPrxFe1.93 (0 ≤ x ≤ 0.40). Solid State Commun. 275, 63 (2018)

    Article  ADS  Google Scholar 

  15. Z.B. Pan, J.J. Liu, X.Y. Liu, R. Wang, J. Wang, P.Z. Si, Magnetostrictive properties of epoxy-bonded Tb1−xNdx(Fe0.8Co0.2)1.93 (0.20 ≤ x ≤ 0.75) composites. Int. J. Mod. Phys. B 28, 1450159 (2014)

    Article  ADS  Google Scholar 

  16. J.J. Liu, Z.B. Pan, P.Z. Si, J. Du, Giant low-field magnetostriction of epoxy/TbxDy1–x(Fe0.8Co0.2)2 composites (0.20 ≤ x ≤ 0.40). Appl. Phys. Lett. 103, 042406 (2013)

    Article  ADS  Google Scholar 

  17. J.J. Liu, S.W. Or, C.Y. Lo, Z.D. Zhang, Magnetic and magnetostrictive properties of TbxDy0.7−xPr0.3(Fe0.9B0.1)1.93 compounds and their composites. IEEE Trans. Magn. 42, 3114 (2006)

    Article  ADS  Google Scholar 

  18. F. Yang, C.M. Leung, S.W. Or, W. Liu, X.K. Lv, Z.D. Zhang, Magnetomechanical properties of epoxy-bonded Sm1−xNdxFe1.55 (0 ≤ x ≤ 0.56) pseudo-1–3 magnetostrictive particulate composites. J. Alloys Compd. 509, 4954 (2011)

    Article  Google Scholar 

  19. S.N. Jammalamadaka, G. Markandeyulu, K. Balasubramaniam, Magnetostriction and anisotropy compensation in TbxDy0.9–xNd0.1Fe1.93 (0.2 ≤ x ≤ 0.4). Appl. Phys. Lett. 97, 242502 (2010)

    Article  ADS  Google Scholar 

  20. F. Li, J.J. Liu, Z.R. Zhang, L.L. Lin, W.C. Shen, X.Y. Zhu, J. Du, P.Z. Si, Composition anisotropy compensation and magnetoelastic properties of Mn-doped TbxHo1–xFe2 Laves compounds (0.08 ≤ x ≤ 0.16). J. Alloys Compd. 725, 946 (2017)

    Article  Google Scholar 

  21. S.W. Or, N. Nersessian, G.P. McKnight, G.P. Carman, Dynamic magnetomechanical properties of [112]-oriented Terfenol-D/epoxy 1–3 magnetostrictive particulate composites. J. Appl. Phys. 93, 8510 (2003)

    Article  ADS  Google Scholar 

  22. B.W. Wang, S.C. Busbridge, Z.J. Guo, Z.D. Zhang, Magnetization processes and magnetostriction of Tb0.27Dy0.73Fe2 single crystal along <110> direction, J. Appl. Phys. 93, 8489 (2003)

    Article  ADS  Google Scholar 

  23. J. Hudson, S.C. Busbridge, A.R. Piercy, Magnetomechanical properties of epoxy-bonded Terfenol-D composites. Ferroelectrics 228, 283 (1999)

    Article  Google Scholar 

  24. Z.B. Pan, J.J. Liu, P.Z. Si, W.J. Ren, Magnetostriction of Laves Tb0.1Ho0.9–xPrx(Fe0.8Co0.2)1.93 alloys. Mater. Res. Bull 77, 122 (2016)

    Article  Google Scholar 

  25. J.J. Liu, Z.B. Pan, X.Y. Liu, Z.R. Zhang, X.H. Song, W.J. Ren, Large magnetostriction and direct experimental evidence for anisotropy compensation in Tb0.4–xNdxDy0.6(Fe0.8Co0.2)1.93 Laves compounds. Mater. Lett. 137, 274 (2014)

    Article  Google Scholar 

  26. S.C. Busbridge, A.R. Piercy, Application of the ratio ∆λ/∆M to giant magnetostrictive materialsin the <110> easy regime, J. Appl. Phys. 83, 7273 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 50801039), Zhejiang Province (Y18E010005), Ningbo city (2016A610044), and K.C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. J. Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, L.L., Liu, J.J., Shen, W.C. et al. Magnetomechanical behavior of Tb0.2Dy0.8−xPrx(Fe0.8Co0.2)1.93/epoxy pseudo-1–3 particulate composites. Appl. Phys. A 124, 706 (2018). https://doi.org/10.1007/s00339-018-2123-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2123-2

Navigation