Skip to main content
Log in

Performance evaluation of hetero-stacked TFET for variation in lateral straggle and its application as digital inverter

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This paper reports the effect of variation in lateral straggle parameter on electrical parameters in hetero-stacked TFET (HS-TFET) through technology computer aided design simulator. Extension of the source/drain dopant into the channel region affects the performance of the device significantly. To optimize the performance of the HS-TFET, various parameters such as drain current (ID), subthreshold swing (SS), transconductance (gm), output conductance (gd), capacitances (Cgg, Cgs, and Cgd) and the cut-off frequency (fT) for variation in lateral straggle parameter from 0 to 8 nm is investigated. Higher value of lateral straggle results in increased in the lateral electric field which increases the ON current of the device, but the subthreshold swing deteriorates due to decrease in the effective channel length. The circuit performance of the HS-TFET is investigated using a digital inverter for variation in lateral straggle parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. T. Numata, S.I. Takagi, Device design for subthreshold slope and threshold voltage control in sub-100-nm fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 51(12), 2161–2167 (2004)

    Article  ADS  Google Scholar 

  2. Y. Khatami, K. Banerjee, Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans. Electron Devices 56(11), 2752–2761 (2009)

    Article  ADS  Google Scholar 

  3. K. Gopalakrishnan, P.B. Griffin, J.D. Plummer, I-MOS: a novel semiconductor device with a subthreshold slope lower than kT/q, in IEEE International Electron Devices Meeting, 2002. IEDM Technical Digest, pp. 289–292 (2002)

  4. H. Kam, D.T. Lee, R.T. Howe, T.-J. King, A new nano-electromechanical field effect transistor (NEMFET) design for low-power electronics, in IEEE International Electron Devices Meeting, 2005. IEDM Technical Digest, pp. 463–466 (2005)

  5. W.Y. Choi, B.G. Park, J.D. Lee, T.J. King Liu, Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)

    Article  ADS  Google Scholar 

  6. J.P. Colinge, C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.M. Kelleher, B. McCarthy, R. Murphy, Nanowire transistors without junctions. Nat. Nanotechnol. 5, 225–229 (2010)

    Article  ADS  Google Scholar 

  7. I. Ferain, C.A. Colinge, J.P. Colinge, Multigate transistors as the future of classical metal–oxide–semiconductor field-effect transistors. Nature 479, 310–316 (2011)

    Article  ADS  Google Scholar 

  8. J. Appenzeller, M. Radosavljevic, J. Knoch, P. Avouris, Tunneling versus thermionic emission in one-dimensional semiconductors. Phys. Rev. Lett. 92(4), 048301 (2004)

    Article  ADS  Google Scholar 

  9. M. Ionescu, H. Riel, Tunnel field-effect transistors as energy efficient electronic switches. Nature 479, 329–337 (2011)

    Article  ADS  Google Scholar 

  10. C. Seabaugh, Q. Zhang, Low-voltage tunnel transistors for beyond CMOS logic. Proc. IEEE 98(12), 2095–2110 (2010)

    Article  Google Scholar 

  11. T. Nirschl, M. Weis, M. Fulde, D.S. Landsiedel, Correction to “Revision of tunneling field-effect transistor in standard CMOS technologies”. IEEE Electron Device Lett. 28(4), 315–315 (2007)

    Article  ADS  Google Scholar 

  12. A. Pal, A.B. Sachid, H. Gossner, V.R. Rao, Insights into the design and optimization of tunnel-FET devices and circuits. IEEE Trans. Electron Devices 58(4), 1045–1053 (2011)

    Article  ADS  Google Scholar 

  13. C. Sandow, J. Knoch, C. Urban, Q.T. Zhao, S. Mantl, Impact of electrostatics and doping concentration on the performance of silicon tunnel field-effect transistors. Solid State Electron. 53(10), 1126–1129 (2009)

    Article  ADS  Google Scholar 

  14. F. Conzatti, M.G. Pala, D. Esseni, Surface-roughness-induced variability in nanowire InAs tunnel FETs. IEEE Electron Device Lett. 33(6), 806–808 (2012)

    Article  ADS  Google Scholar 

  15. K.H. Kao, A.S. Verhulst, W.G. Vandenberghe, K.D. Meyer, Counterdoped pocket thickness optimization of gate-on-source-only tunnel FETs. IEEE Trans. Electron Devices 60(1), 6–12 (2013)

    Article  ADS  Google Scholar 

  16. R. Vishnoi, M.J. Kumar, Compact analytical drain current model of gate-all-around nanowire tunneling FET. IEEE Trans. Electron Devices 61(7), 2599–2603 (2014)

    Article  Google Scholar 

  17. W.C.Y. Ma, Y.H. Chen, Performance improvement of poly-Si tunnel FETs by trap density reduction. IEEE Trans. Electron Devices 63(2), 864–868 (2016)

    Article  ADS  Google Scholar 

  18. R. Goswami, B. Bhowmick, An analytical model of drain current in a nanoscale circular gate TFET. IEEE Trans. Electron Devices 64(1), 45–51 (2017)

    Article  ADS  Google Scholar 

  19. C. Wu, Q. Huang, Y. Zhao, J. Wang, Y. Wang, R. Huang, A novel tunnel FET design with stacked source configuration for average subthreshold swing reduction. IEEE Trans. Electron Devices 63(12), 5072–5076 (2016)

    Article  ADS  Google Scholar 

  20. H. Dennard, F.H. Gaensslen, V.L. Rideout, E. Bassous, A.R. LeBlanc, Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid State Circuits 9(5), 256–268 (1974)

    Article  ADS  Google Scholar 

  21. S. Gosh, K. Kolen, C.K. Sarkar, Impact of the lateral straggle on the analog and RF performance of TFET. Microelectron. Reliab. 55, 326–331 (2015)

    Article  Google Scholar 

  22. A. Kranti, G.A. Armstrong, Design and optimization of FinFETs for ultra-low-voltage analog applications. IEEE Trans. Electron Devices 54(12), 3308–3316 (2007)

    Article  ADS  Google Scholar 

  23. S. Ghosh, K. Koley, C.K. Sarkar, Deep insight into linearity and NQS parameters of tunnel FET with emphasis on lateral straggle. Micro Nano Lett. 13(1), 35–40 (2018)

    Article  Google Scholar 

  24. TCAD Sentaurus Device User’s Manual, Synopsys, Inc. (Mountain View, CA) (2010)

  25. A. Biswas, S.S. Dan, C. Royer, W. Grabinski, A.M. Ionescu, TCAD simulation of SOI TFETs and calibration of non-local band-to-band tunneling model. Microelectron. Eng. 98, 334–337 (2012)

    Article  Google Scholar 

  26. M.J.M. Pelgrom, H.P. Tuinhout, M. Vertregt, Transistor matching in analog CMOS applications. IEDM Tech. Dig. 34(1), 1–4 (1998)

    Google Scholar 

  27. A. Nandi, A.K. Saxena, S. Dasgupta, Analytical modeling of a double gate MOSFET considering source/drain lateral gaussian doping profile. IEEE Trans. Electron Devices 60(11), 3705–3709 (2013)

    Article  ADS  Google Scholar 

  28. M.G. Bardon, H.P. Neves, R. Puers, C.V. Hoof, Pseudo-two-dimensional model for double-gate tunnel FETs considering the junctions depletion regions. IEEE Trans. Electron Devices 57(4), 827–834 (2010)

    Article  ADS  Google Scholar 

  29. R.K. Sharma, C.A. Dimitriadis, M. Bucher, A comprehensive analysis of nanoscale single- and multi-gate MOSFETs. Microelectron. J. 52, 66–72 (2016)

    Article  Google Scholar 

  30. Y. Yang, X. Tong, L.T. Yang, P.F. Guo, L. Fan, Y.C. Yeo, Tunneling field-effect transistor: capacitance components and modeling. IEEE Electron Device Lett. 31(7), 752–754 (2010)

    Article  ADS  Google Scholar 

  31. D. Flandre, J.P. Raskin, D. Vanhoenacker, SOI CMOS transistors for RF and microwave applications. Int. J. High Speed Electron. Syst. 11, 1159–1248 (2001)

    Article  Google Scholar 

  32. R. Goswami, B. Bhowmick, S. Baishya, Effect of scaling on noise in circular gate TFET and its application as a digital inverter. Microelectron. J. 53, 6–24 (2016)

    Article  Google Scholar 

  33. S. Mookerjea, R. Krishnan, S. Datta, V. Narayanan, Effective capacitance and drive current for tunnel FET (TFET) CV/I estimation. IEEE Trans. Electron Devices 56(9), 2092–2098 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vanlalawmpuia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vanlalawmpuia, K., Saha, R. & Bhowmick, B. Performance evaluation of hetero-stacked TFET for variation in lateral straggle and its application as digital inverter. Appl. Phys. A 124, 701 (2018). https://doi.org/10.1007/s00339-018-2121-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2121-4

Navigation