Skip to main content

Lateral Straggle Parameter and Its Impact on Hetero-Stacked Source Tunnel FET

  • Chapter
  • First Online:
Contemporary Trends in Semiconductor Devices

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 850))

  • 647 Accesses

Abstract

The strict power restrictions of integrated circuits and the non-scalability of the subthreshold slope in a metal-oxide semiconductor field-effect transistor (MOSFET) present major challenges to the continuous scaling of field-effect transistors. Henceforth, tunnel field-effect transistors (Tunnel FETs) have been deemed an optimistic contender to substitute the well-known conventional MOSFET as they possess a steep subthreshold slope lower than 60 mV/decade along with its fast switching characteristics at a low operating power supply voltage. Despite numerous advantages, the performance of the tunnel FET primarily relies on the accuracy in the manufacturing procedure. Ion implantation techniques have been employed to comprehend the variations in non-zero tilting angle. This extends the dopants from the source as well as drain regions into the channel region and affects the performances of tunnel FET significantly. Using Technology Computer Aided Design (TCAD) simulations, detailed examination on the impact of variations in lateral straggling parameters (σ) for a hetero-stacked source tunnel FET (HSS-TFET) is carried out. The chapter focuses on the investigation of Analog/RF figure of merits of the HSS-TFET due to lateral straggling variations. A mixed-mode HSS-tunnel FET is analyzed by the implementation of a digital HSS-tunnel FET inverter for variations in the straggling parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kahng D (1976) A historical perspective on the development of MOS transistors and related devices. IEEE Trans Electron Devices 23:655–657

    Article  Google Scholar 

  2. Brinkman WF, Haggan DE, Troutman WW (1997) A history of the invention of the transistor and where it will lead us. IEEE J Solid-State Circ 32:1858–1865

    Article  Google Scholar 

  3. Mack CA (2011) Fifty years of Moore’s law. IEEE Trans Semicond Manuf 24:202–207

    Article  Google Scholar 

  4. Zhang Q, Zhao W, Seabaugh A (2006) Low-subthreshold-swing tunnel transistors. IEEE Electron Device Lett 27:297–300

    Article  Google Scholar 

  5. Ionescu AM, Riel H (2011) Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479:329–337

    Article  Google Scholar 

  6. Lu H, Seabaugh A (2014) Tunnel field-effect transistors: State-of-the-art. J. Electron Devices Soc 44–49

    Google Scholar 

  7. Koswatta SO, Lundstrom MS (2009) Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans Electron Devices 56:456–465

    Article  Google Scholar 

  8. Knoch J, Appenzeller J (2005) A novel concept for field-effect transistors: The tunneling carbon nanotube FET. In: Proceedings of 63rd DRC. IEEE, pp 153–156

    Google Scholar 

  9. Knoch J, Appenzeller J (2008) Tunneling phenomena in carbon nanotube field-effect transistors. Physica Status Solidi (a) 205(4):679–694

    Article  Google Scholar 

  10. Choi WY, Park BG, Lee JD, Liu TJK (2007) Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett 28:743–745

    Article  Google Scholar 

  11. Taur Y, Ning TH (1998) Fundamentals of modern VLSI devices. Cambridge University Press, Cambridge, UK

    Google Scholar 

  12. Khatami Y, Banerjee K (2009) Steep subthreshold slope n- and p-type tunnel-FET devices for low-power and energy-efficient digital circuits. IEEE Trans Electron Devices 56:2752–2761

    Article  Google Scholar 

  13. Lee M, Jeon Y, Son KS, Shim JH, Kim S (2012) Comparative performance analysis of silicon nanowire tunnel FETs and MOSFETs on plastic substrates in flexible logic circuit applications. Physica Status Solidi (a) 209(7):1350–1358

    Article  Google Scholar 

  14. International Technology Roadmap for Semiconductors (ITRS (2013) Emerging research devices, 2013 edn. http://www.itrs.net

  15. Verhulst AS, Vandenberghe WG, Leonelli D, Rooyackers R, Vandooren A, Pourtois G, Gendt SD, Heyns MM, Groeseneken G (2010) Boosting the on-current of Si-based tunnel field-effect transistors. ECS Trans 33(6):363–372

    Article  Google Scholar 

  16. Bhushan B, Nayak K, Rao VR (2012) DC compact model for SOI tunnel field-effect transistors. IEEE Trans Electron Devices 59(10):2635–2642

    Article  Google Scholar 

  17. Toh EH, Wang GH, Yeo GSYC (2007) Device physics and design of double-gate tunneling field-effect transistor by silicon film thickness optimization. Appl Phys Lett 90(263507)

    Google Scholar 

  18. Liu L, Mohata D, Datta S (2012) Scaling length theory of double-gate interband tunnel field-effect transistors. IEEE Trans. on Electron Devices 59(4):902–908

    Article  Google Scholar 

  19. Verhulst AS, Sorée B, Leonelli D, Vandenberghe WG, Groeseneken G (2010) Modeling the single-gate, double-gate, and gate-all-around tunnel field-effect transistor. J Appl Phys 107:024518-1-024518–6

    Article  Google Scholar 

  20. Zhan A, Mei J, Zhang L, He H, He J, Chan M (2012) Numerical study on dual material gate nanowire tunnel field-effect transistor. In: International conference on electron devices and solid-state circuit (EDSSC), Bangkok, Thailand, 3–5 Dec 2012

    Google Scholar 

  21. Vishnoi R, Kumar MJ (2014) Compact analytical drain current model of gate-all around nanowire tunneling FET. IEEE Trans Electron Devices 61(7):2599–2603

    Article  Google Scholar 

  22. Bohr MT, Chau RS, Ghani T, Mistry K (2007) The High-k Solution. IEEE Spectr 44(10):29–35

    Article  Google Scholar 

  23. Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high-κ gate dielectric. IEEE Trans Electron Devices 54:1725–1733

    Article  Google Scholar 

  24. Schlosser M, Bhuwalka K, Sauter M, Zilbauer T, Sulima T, Eisele I (2009) Fringing-induced drain current improvement in the tunnel field-effect transistor with high-κ gate dielectrics. IEEE Trans Electron Devices 56:100–108

    Article  Google Scholar 

  25. Anghel C, Chilagani P, Amara A, Vladimirescu A (2010) Tunnel field effect transistor with increased ON current, low-κ spacer and high-κ dielectric. Appl Phys Lett (122104)

    Google Scholar 

  26. Jhaveri R, Nagavarapu V, Woo J (2011) Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans Electron Devices 58:80–86

    Article  Google Scholar 

  27. Verreck D, Verhulst AS, Kao KH, Vandenberghe WG, Meyer KD, Groeseneken G (2013) Quantum mechanical performance predictions of p-n-i-n versus pocketed line tunnel field-effect transistors. IEEE Trans Electron Devices 60:2128–2134

    Article  Google Scholar 

  28. Abdi BD, Kumar MJ (2014) In-built N+ pocket p-n-p-n tunnel field-effect transistor. IEEE Electron Device Lett 35:1170–1172

    Article  Google Scholar 

  29. Agopian PGD, Martino MDV, Santos SD et al (2015) Influence of the source composition on the analog performance parameters of vertical nanowire-TFETs. IEEE Trans Electron Devices 61:16–22

    Article  Google Scholar 

  30. Toh EH, Wang GH, Samudra G, Yeo YC (2008) Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Applied Physics 103(104504)

    Google Scholar 

  31. Verhulst AS, Vandenberghe WG, Maex K, Groeseneken G (2007) Tunnel field-effect transistor without gate-drain overlap. Appl Phys Lett 91(053102)

    Google Scholar 

  32. Alam K, Takagi S, Takenaka M (2014) A Ge ultrathin-body n-channel tunnel FET: effects of surface orientation. IEEE Trans Electron Devices 61:3594–3600

    Article  Google Scholar 

  33. Chander S, Baishya S (2015) A two-dimensional gate threshold voltage model for a heterojunction SOI-tunnel FET with oxide/source overlap. IEEE Electron Device Lett 36(7):714–716

    Article  Google Scholar 

  34. Kim SH, Jacobson ZA, Liu TJK (2010) Impact of body doping and thickness on the performance of germanium-source TFETs. IEEE Trans Electron Devices 57(7):1710–1713

    Article  Google Scholar 

  35. Goswami R, Bhowmick B (2017) An analytical model of drain current in a nanoscale circular gate TFET. IEEE Trans. on Electron Devices 64(1):45–51

    Article  Google Scholar 

  36. Saha R, Bhowmick B, Baishya S (2019) Impact of WFV on electrical parameters due to high-k/metal gate in SiGe channel tunnel FET. Microelectron Eng 214:1–4

    Article  Google Scholar 

  37. Mitra SK, Bhowmick B (2018) A compact interband tunneling current model of gate-on source/channel SOI-TFET. J Comput Electron 17(4):1557–1566

    Article  Google Scholar 

  38. Wu C, Huang Q, Zhao Y et al (2016) A novel tunnel FET design with stacked source configuration for average subthreshold swing reduction. IEEE Trans Electron Devices 63(12):5072–5076

    Article  Google Scholar 

  39. Shockley W (1957) Forming Semiconductive devices by ionic bombardment. US Patent 2,787,564, 2 April 1957

    Google Scholar 

  40. Mayer JW, Eriksson L, Davies JA (1970) Ion implantation in semiconductors. Academic Press, New York

    Google Scholar 

  41. Ziegler JF (1992) Ion implantation technology. North Holland Amsterdam

    Google Scholar 

  42. Kranti A, Armstrong GA (2007) Source/drain extension region engineering in FinFETs for low-voltage analog applications. IEEE Electron Device Lett 28(2):139–141

    Article  Google Scholar 

  43. Rimini E (1995) Ion implantation: Basics to Device Fabrication. Springer Science+Business Media, New York

    Google Scholar 

  44. Gosh S, Kolen K, Sarkar CK (2015) Impact of the lateral straggle on the analog and RF performance of TFET. Microelectron Reliab 55:326–331

    Article  Google Scholar 

  45. Vanlalawmpuia K, Saha R, Bhowmick B (2018) Performance evaluation of heterostacked TFET for variation in lateral straggle and its application as digital inverter. Appl Phys A: Mater Sci Process 124(10):701. https://doi.org/10.1007/s00339-018-2121-4

    Article  Google Scholar 

  46. Saha R, Vanlalawmpuia K, Bhowmick B, Baishya S (2019) Deep insight into DC, RF/analog, and digital inverter performance due to variation in straggle parameter for gate modulated TFET. Mater Sci Semicond Process 91:102–107. https://doi.org/10.1016/j.mssp.2018.11.011

    Article  Google Scholar 

  47. Ziegler JF (1992) Handbook of ion implantation technology. Elsevier Science Publications, p 119

    Google Scholar 

  48. Kranti A, Armstrong GA (2007) Design and optimization of FinFETs for ultra-low-voltage analog applications. IEEE Trans Electron Devices 54(12):3308–3316

    Article  Google Scholar 

  49. Sentaurus Device Users’ Manual (2013) Synopsys Inc. Mountain View, CA, USA

    Google Scholar 

  50. Biswas A, Dan SS, Royer C, Grabinski W, Ionescu AM (2012) TCAD simulation of SOI TFETs and calibration of non-local band-to-band tunneling model. Microelectron Eng 98:334–337

    Article  Google Scholar 

  51. Trivedi AR, Carlo S, Mukhopadhyay S (2013) Exploring tunnel-FET for ultra-low power analog applications: a case study on operational transconductance amplifier. In: Proceedings of the 50th annual design automation conference, IEEE, p 109

    Google Scholar 

  52. Hoyniak D, Nowak E, Anderson RL (2000) Channel electron mobility dependence on lateral electric field in field-effect transistors. J Appl Phys 87:876–881

    Article  Google Scholar 

  53. Yang Y, Tong X, Yang LT, Guo PF, Fan L, Yeo YC (2010) Tunneling field-effect transistor: capacitance components and modeling. IEEE Electron Device Lett 31:752–754

    Article  Google Scholar 

  54. Dagtekin N, Ionescu AM (2015) Impact of super-linear onset, off-region due to uni-directional conductance and dominant CGD on performance of TFET-based circuits. IEEE J Electron Devices Soc 3:233–239

    Article  Google Scholar 

  55. Mookerjea S, Krishnan R, Datta S, Narayanan V (2009) On enhanced Miller capacitance effect in interband tunnel transistors. IEEE Electron Device Lett 30:1102–1104

    Article  Google Scholar 

  56. Mallik A, Chattopadhyay A (2012) Tunnel field-effect transistors for analog/mixed-signal system-on-chip applications. IEEE Trans. on Electron Devices 59:888–894

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vanlalawmpuia, K., Bhowmick, B. (2022). Lateral Straggle Parameter and Its Impact on Hetero-Stacked Source Tunnel FET. In: Goswami, R., Saha, R. (eds) Contemporary Trends in Semiconductor Devices. Lecture Notes in Electrical Engineering, vol 850. Springer, Singapore. https://doi.org/10.1007/978-981-16-9124-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-9124-9_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-9123-2

  • Online ISBN: 978-981-16-9124-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics