Skip to main content
Log in

Temperature-dependent ferroelectric properties of near stoichiometric lithium niobate single crystal

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The temperature dependent ferroelectric hysteresis properties of stoichiometric lithium niobate single crystals have been studied in this article. It is found that remnant polarization (Pr) and the coercive field (Ec) increase monotonically with increasing electric field at 293 K, and the Pr at 76 K is smaller than that at 293 K due to less switchable domains can be activated at low temperature, whereas the Ec at 76 K is larger than that at 293 K due to the trapped oxygen vacancy cannot be detrapped easily at low temperature. However, both the Pr and Ec increase when the temperature decreases from 293 to 247 K, then decrease with further decreasing temperature to 76 K. The pinning of the switched domains induces the increase of Pr and the deepening and widening of the domain wall-defect interaction potential well makes the activated domains difficult to be back-switched leads to the increase of Ec when the temperature decreases from 293 to 247 K, while less domains will be activated in the domain switching process induces the decrease of Pr and the frozen of domains with higher activation energy is the cause of Ec decreasing from 247 to 76 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.D. Witmer, J.A. Valery, P. Arrangoiz-Arriola, C.J. Sarabalis, J.T. Hill, A.H. Safavi-Naeini. Sci. Rep. 7, 46313 (2017)

    Article  ADS  Google Scholar 

  2. M.S. Nisar, X. Zhao, A. Pan, S. Yuan, J. Xia, IEEE Photonics J. 9(1), 1–8 (2017)

    Article  Google Scholar 

  3. A. García-Cabañes, L. Blázquez-Castro, F. Arizmendi, Agulló-López, M. Carrascosa, Crystals 8(2), 65 (2018)

    Article  Google Scholar 

  4. J.F. Elvira, Á Muñoz-Martínez, C. Barroso, J.B. Denz, A. Ramiro, F. García-Cabañes, Agulló-López, M. Carrascosa, Opt. Lett. 43(1), 30–33 (2018)

    Article  ADS  Google Scholar 

  5. V.Y. Shur, A. Akhmatkhanov, I. Baturin, Appl. Phys. Rev. 2(4), 040604 (2015)

    Article  ADS  Google Scholar 

  6. V.Y. Shur, in Advanced Piezoelectric Materials (Second edn.) (Elsevier, New York, 2017), pp. 235–270

    Book  Google Scholar 

  7. G. Catalan, J. Seidel, R. Ramesh, J.F. Scott, Rev. Mod. Phys. 84(1), 119–156 (2012)

    Article  ADS  Google Scholar 

  8. E. Soergel, Appl. Phys. B 81(6), 729–751 (2005)

    Article  ADS  Google Scholar 

  9. M. De Angelis, S. De Nicola, A. Finizio, G. Pierattini, P. Ferraro, S. Grilli, M. Paturzo, Appl. Phys. Lett. 85(14), 2785–2787 (2004)

    Article  ADS  Google Scholar 

  10. H. Wu, J. Wang, S. Cao, L.-Q. Chen, T. Zhang, Smart Mater. Struct. 23(2), 025004 (2013)

    Article  ADS  Google Scholar 

  11. S. Patel, A. Chauhan, A. Chauhan, R. Vaish, Mater. Res. Express 2(3), 035501 (2015)

    Article  ADS  Google Scholar 

  12. Y. Zhang, X. Zhong, Z. Chen, J. Wang, Y. Zhou, J. Appl. Phys. 110(1), 014102 (2011)

    Article  ADS  Google Scholar 

  13. A. Pramanick, A.D. Prewitt, J.S. Forrester, J.L. Jones, Crit. Rev. Solid State Mater. Sci. 37(4), 243–275 (2012)

    Article  ADS  Google Scholar 

  14. M. Dawber, K. Rabe, J. Scott, Rev. Modern Phys. 77(4), 1083 (2005)

    Article  ADS  Google Scholar 

  15. C. Park, D. Chadi, Phys. Rev. B 57(22), R13961 (1998)

    Article  ADS  Google Scholar 

  16. X. Lou, J. Appl. Phys. 105(2), 024101 (2009)

    Article  ADS  Google Scholar 

  17. R. Yimnirun, S. Wongsaenmai, R. Wongmaneerung, N. Wongdamnern, A. Ngamjarurojana, S. Ananta, Y. Laosiritaworn, Phys. Scr. 2007(T129), 184 (2007)

    Article  Google Scholar 

  18. M. Picinin, J. Lente, Eiras, J. Rino, Phys. Rev. B 69(6), 064117 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (Grant Nos. 51474089, 51874137 and 11504082), Natural Science Foundation of Hebei Province (Nos. A2018209147), and the Science Foundation of North China University of Science and Technology (Nos. GP201502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huifeng Bo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bo, H., Meng, Q., Hu, H. et al. Temperature-dependent ferroelectric properties of near stoichiometric lithium niobate single crystal. Appl. Phys. A 124, 691 (2018). https://doi.org/10.1007/s00339-018-2114-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2114-3

Navigation