Skip to main content
Log in

Synthesis and characterization of thermochromic Ag2HgI4 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Silver mercury iodide thin films (Ag2HgI4) were successively deposited onto pre-cleaned glass substrates at room temperature by chemical bath deposition at different deposition times producing films of different thicknesses. The elemental composition of the as-deposited films measured by energy dispersive X-ray analysis shows the formation of stoichiometric Ag2HgI4 thin films. X-ray diffraction patterns reveal that Ag2HgI4 films are single phase of a polycrystalline structure, and have a dominant diffraction along [111] direction. The structure of the films was further investigated by transmission electron microscope verifying the polycrystalline nature of samples and nearly matching with X-ray diffraction data. The FESEM images reveal dense and well-defined grains. The optical properties of as-deposited films have been calculated from the recorded transmission and reflection data in the spectral range 400–2500 nm. The analysis of the optical absorption coefficient indicates the presence of direct and indirect optical transition whose values decrease with the increase of thickness, while the values Urbach energy follow is a reverse behavior. The study of optic parameters of 558 nm thick film heated at 330 K was also investigated. The electrical conductivity was measured by four-probe experiment in the range from 300 to 500 K. The activation energy was found to nearly equal half of the direct band gap indicating the intrinsic conduction of studied films is dominant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ž. Rašković-Lovre, T.T. Mongstad, S. Karazhanov, C.C. You, S. Lindberg, M. Lelis, D. Milcius, S. Deledda, Annealing-induced structural rearrangement and optical band gap change in Mg–Ni–H thin films. Mater. Res. Express 4, 016405(2017)

    Article  ADS  Google Scholar 

  2. Ž. Rašković-Lovre, T. Mongstad, S. Karazhanov, S. Lindberg, C.C. You, S. Deleddaa, Thermochromic and photochromic color change in Mg–Ni–H thin films. Mater. Lett. 188, 403–405 (2017)

    Article  Google Scholar 

  3. A.M. Salem, Y.A. El-Gendy, G.B. Sakr, W.Z. Soliman, Optical properties of thermochromic Cu2HgI4 thin films. J. Phys. D: Appl. Phys. 41(7), 025311 (2008) pp)

    Article  Google Scholar 

  4. P. Bamfield, Chromic Phenomena; Technological Applications of Colour Chemistry, 2nd ed. (Royal Society of Chemistry, Cambridge, 2001), p. 34

    Google Scholar 

  5. P.K. Peter, S.J. Lippard, Copper(II) chemistry in hexaaza binucleating macrocycles: hydroxide and acetate derivatives. J. Am. Chem.Soc. 106, 2328 (1984)

    Article  Google Scholar 

  6. R. Yvette Agnus, J.P. Louis, R. Gisselbrecht, Weiss, Dicopper(II) chloro and azido inclusion complexes of the [24-ane-N2S4] binucleating macrocycle. Synthesis, crystal and molecular structures, and spectral, magnetic, and electrochemical properties. J. Am. Chem. Soc. 106, 93 (1984)

    Article  Google Scholar 

  7. D.E. Fenton, U. Casellato, M. Vidali, The evolution of binucleating ligands. Chim. Acto 62, 57 (1982)

    Google Scholar 

  8. Y. Jin, C. Shi, X. Li, F. Wang, M. Ge, Preparation and luminescence studies of thermosensitive PAN luminous fiber based on the heat sensitive rose red TF-R1 thermochromic pigment. Dyes Pigm. 139, 693–700 (2017)

    Article  Google Scholar 

  9. N. Abdullaha, A.R. Talibb, A.A. Jaafar, M.A. Salle, W.T. Chong. Exp. Thermal Fluid Sci. 34, 1089–1121 (2010)

    Article  Google Scholar 

  10. B. Baranowski, M. Friesel, A. Lunden, High-pressure differential scanning calorimetry study of Ag2HgI4. Part I. Solid State lonics 9(& 10), 1179–1184 (1983)

    Article  Google Scholar 

  11. A. Noorussaba, Ahmad, Phase transition study in a [Cu2HgI4: 0.xAgI] mixed composite system. Bull. Mater. Sci. 33, 419–425 (2010)

    Article  Google Scholar 

  12. K. Funke, Crystal structure of the compounds A2MnX4−xX′x (A = NH4, Rb, Cs; X = Cl; X′ = Br, I; x = 0, 1, 2) and magnetic susceptibility of A2MnCl4 (A = Rb, Cs). Prog. Solid State Chem. 11, 345–402 (1976)

    Article  Google Scholar 

  13. S. Jay, R.N. Chivian, D.D. Claytor, Eden, R.B. Hemphill, Infrared recording with thermochromic Cu2Hgl4. Appl. Opt. 11, 2649 (1972)

    Article  ADS  Google Scholar 

  14. S. Jay, R.N. Chivian, Claytor, D.D. Eden, Infrared Holography at 10.6 µm. Appl. Phys. Lett. 15, 123 (1969)

    Article  ADS  Google Scholar 

  15. S. Hull, D.A. Keen, Structural characterization of the beta to alpha superionic transition in Ag2HgI4 and Cu2HgI4. J. Phys. Condens. Matter. 12, 3751–3765 (2000)

    Article  ADS  Google Scholar 

  16. K. Wakamura, Characteristic properties of dielectric and electronic structures in superionic conductors. Solid State Ionics 149, 73–80 (2002)

    Article  Google Scholar 

  17. I. Karbovnyk, S. Piskunov, I. Bolesta, S. Bellucci, M. Cestelli Guidi, M. Piccinini, E. Spohrand, A.I. Popov, Far IR spectra of Ag2CdI4 at temperature range 10–420 K: complementary experimental and first-principle theoretical study. Eur. Phys. J. B 70, 443–447 (2009)

    Article  ADS  Google Scholar 

  18. J.A.A. Ketelaar, The relation between electrolytic conduction in solids and crystal structure. Trans. Faraday SOC. 34, 874–882 (1938)

    Article  Google Scholar 

  19. J.A.A.Z. Ketelaar, Phys. Chem., Abt. B 268, 327–334 (1934)

    Google Scholar 

  20. D.C. Parfitta, S. Hullb, D.A. Keen, W. Crichton, High-pressure dissociation of silver mercury iodide, Ag2HgI4. J. Solid State Chem. 177, 3715–3720 (2004)

    Article  ADS  Google Scholar 

  21. M. Friesel, B. Baranowski, A. Lundén, Differential scanning calorimetry as a tool for evaluating preparation techniques, and detecting impurities, metastable states, etc. in silver mercury iodide (Ag2HgI4). Thermochrmrcu Acta 131, 191–210 (1988)

    Article  Google Scholar 

  22. R. Sudharsanan, B.P. Clayman, Far infrared studies on the superionic conductor Ag2HgI4. Solid State Ion. 15, 287–291 (1985)

    Article  Google Scholar 

  23. J.w. brightwell, C.N. Burklery, R.C. Hollyoak, B. ray, Structural and phase equilibrium comparisons of Ag2HgI4 with Ag2CdI4 and Ag2ZnI4. J. Mater. Sci. Lett. 3, 443–446 (1984)

    Article  Google Scholar 

  24. S. Hull, Superionics: crystal structures and conduction processes. Rep. Prog. Phys. 67, 1233–1314 (2004)

    Article  ADS  Google Scholar 

  25. H. Hahn, G. Frank, W. Klingler, Z. Anorg, On the structure of βCu2HgJ4 and β-Ag2HgJ4. Allg. Chem. 279, 271–280 (1955)

    Article  Google Scholar 

  26. K.W. Browall, J.S. Kasper, Single-crystal studies of β-Ag2HgI4. J. Solid State Chem. 10, 20–28 (1974)

    Article  ADS  Google Scholar 

  27. M. Paic, V. Paic, Phases and phase transitions of the superionic conductor Ag2HgI4 in the temperature range between 4.2 K and 370 K detected by diffuse reflectance spectrometry. Solid State Ioni. 14, 187–197 (1984)

    Article  Google Scholar 

  28. L. Suchow, G.R. Pond, Electrical conductivity of Ag2HgI4, Cu2HgI4 and their eutectoid. J. Am. Chem. Soc. 75, 5242–5244 (1953)

    Article  Google Scholar 

  29. J.A.A.Z. Ketelaar, Phys. Chem. Abt. B, 53–56 (1935)

  30. I. Kh. B.V. Akopyan, Novikov, Determination of the heat of superionic Ag2HgI4 and Cu2HgI4 crystals formation in the course of the solid state reactions. Solid State Ion. 89, 333–335 (1996)

    Article  Google Scholar 

  31. R.W. Asmussen, P. Andersen, The magnetic properties of [Co-(NH3)5(NO)]Cl2 (black) and [Co(NH3)5(NO)](NO3)2.½H2O (red). Studies in magneto chemistry 21. Acta Chem. Scand. 12, 939–944 (1958)

    Article  Google Scholar 

  32. M. Dahmani, M. Tarik Ouahrani, A.H. Mebrouki, Reshak, Towards a deeper understanding of physical and chemical properties of Ag2HgI4 and Cu2HgI4 defective crystals, from first principles calculations. Mater. Sci. Semicond. Process. 27, 433–445 (2014)

    Article  Google Scholar 

  33. A.N. Georgobiani, S.I. Radautsan, I.M. Tiginyanu, Sov. Phys. Semicond. 19, 121–132 (1985)

    Google Scholar 

  34. S.I. Radautsan, I.M. Tiginyanu, Defect engineering in II–III2–VI4 and related compounds. Jpn. J. Appl. Phys. 32, 5–9 (1993) Suppl. 32 – 3

    Article  Google Scholar 

  35. A.S. Hassanien, A. Alaa, Akl, Influence of composition on optical and dispersion parameters of thermally evaporated non-crystalline Cd50S50−xSex thin films. J. Alloy. Compd. 648, 280–290 (2015)

    Article  Google Scholar 

  36. Joint Committee on, Powder Diffraction Standards 2002 JCPDS-ICDD-Card No: 750918

  37. M. Thirumoorthi, J.T. Prakash, Structural, morphological characteristics and optical properties of Y doped ZnO thin films by sol–gel spin coating method, Super lattice. Microstruct. 85, 237–247 (2015)

    Article  Google Scholar 

  38. M.S. El-Bana, I.M. El Radaf, S.S. Fouad, G.B. Sakr, Structural and optoelectrical properties of nanostructured LiNiO2 thin films grown by spray pyrolysis technique. J. Alloy. Compd. 705, 333–339 (2017)

    Article  Google Scholar 

  39. A. Sawaby, M.S. Selim, S.Y. Marzouk, M.A. Mostafa, A. Hosny, Structure, optical and electrochromic properties of NiO thin films. Phys. B 405, 3412–3420 (2010)

    Article  ADS  Google Scholar 

  40. T.A. Hameed, W. Cao, E.M. Abdelrazek, I.K. El Zawawi, B.A. Mansour, H.E. Elsayed-Ali, Effect of substrate temperature on properties of Cu(In, Ga,Al)Se2 films grown by magnetron sputtering, J. Mater. Sci. Mater. Electron 27(4), 3209–3216 (2016)

    Article  Google Scholar 

  41. J. Tauc, in Optical Properties of Solids, ed. by F. Abeles (North-Holland, Amsterdam, 1969)

    Google Scholar 

  42. F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)

    Article  ADS  Google Scholar 

  43. D.J. Dunstan, Evidence for a common origin of the Urbach tails in amorphous and crystalline semiconductors. J. Phys. C: Solid State Phys. 30, L419–L424 (1982)

    Article  Google Scholar 

  44. M. Zanini, J. Tauc, J.Non-Cryst.Solids 23, 349 (1977)

    Article  ADS  Google Scholar 

  45. E.A. Davis, N.F. Mott. Philos. Mag. 22, 903 (1970)

    Article  ADS  Google Scholar 

  46. I.P. Jacques, Optical process in Semiconductor (Engle wood cliffs, New Jersey, 1971)

    Google Scholar 

  47. Y. Gupta, P. Arun, Refractive Index of p-SnS thin films and its dependence on defects, cond-mat.mtrl-sci. (arXiv:1602.00120v1)

  48. O.S. Heavens, Optical Properties of Thin Solid Films (Dover, New York, 1965)

    Google Scholar 

  49. M.M. El-Nahass, I.T. Zedan, F.S. Abu-Samah, Effect of annealing on structure and optical properties of Ga5Se95 films. Opt. Laser Technol. 44, 621 (2012)

    Article  ADS  Google Scholar 

  50. J. Shadia, Ikhmayies, The influence of annealing on the optical properties of spray-deposited SnO2:F thin films international. J. Hydrog. Energy 41, 12626–12633 (2016)

    Article  Google Scholar 

  51. J.S. Blakemore, Solid State Physics, 2nd ed. (W.B. Saunders Company, Philadelphia, 1974)

    Google Scholar 

  52. A.M. Shakra, M. Fadel, G.B. Sakr, Electrical and switching behavior of quaternary defect chalcopyrite CdInGaSe4 thin films. Appl. Phys. A 122, 147 (2016)

    Article  ADS  Google Scholar 

  53. N.F. Mott, Conduction in non-crystalline systems IV; Anderson localization in a disordered lattice. Phil. Mag. 22, 7–29 (1970)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Talaat A. Hameed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, T.A., Radaf, I.M.E. & Sakr, G.B. Synthesis and characterization of thermochromic Ag2HgI4 thin films. Appl. Phys. A 124, 684 (2018). https://doi.org/10.1007/s00339-018-2107-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2107-2

Navigation