Skip to main content
Log in

Annealing temperature-dependent morphology, structure, and optical properties of well-aligned ZnO nanowire arrays

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this paper, using a facile and low-cost chemical bath deposition route, well-aligned zinc oxide (ZnO) nanowire arrays (ZNWAs) were grown on the silica glass substrate at low temperature. The as-grown ZNWAs were then annealed at different temperatures from 400 to 800 °C, their morphology, crystalline structure and optical properties were analyzed in detail. The results showed that both the average diameter and length of ZnO nanowires increased with raising annealing temperature, when annealing temperature was 600 °C, the ZnO nanowires had the best crystallization quality and minimum Urbach energy, near band edge (NBE) emission peak increased sharply. In addition, when the annealing temperature was up to 800 °C, many adjacent ZnO nanowires bonded together in the ZNWAs, a substantial increase of their lattice disorder induced by too high annealing temperature, a sharp decrease in optical transmission of the ZNWAs in the visible region was found, their Urbach energy increased dramatically and crystallization quality became poor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. Ahmad, J. Zhu, ZnO based advanced functional nanostructures: synthesis, properties and applications. J. Mater. Chem. 21, 599–614 (2011)

    Article  Google Scholar 

  2. J.W. Kim, Y. Porte, K.Y. Ko, H. Kim, J.-M. Myoung, Micro-patternable double-faced ZnO nanoflowers flexible gas sensor. ACS Appl. Mater. Interfaces 9, 32876–32886 (2017)

    Article  Google Scholar 

  3. A.M. Golsheikh, K.Z. Kamali, N.M. Huang, A.K. Zak, Effect of calcination temperature on performance of ZnO nanoparticles for dye-sensitized solar cells. Powder Technol. 329, 282–287 (2018)

    Article  Google Scholar 

  4. Y. Yang, Y.F. Cheng, One-step facile preparation of ZnO nanorods as high-performance photoanodes for photoelectrochemical cathodic protection. Electrochim. Acta 276, 311–318 (2018)

    Article  Google Scholar 

  5. X. Wang, Y. Wang, D. Åberg, P. Erhart, N. Misra, A. Noy, A.V. Hamza, J. Yang, Batteryless chemical detection with semiconductor nanowires. Adv. Mater. 23, 117–121 (2011)

    Article  Google Scholar 

  6. B. Cook, Q. Liu, J. Liu, M. Gong, D. Ewing, M. Casper, A. Stramel, J. Wu, Facile zinc oxide nanowire growth on graphene via hydrothermal floating method: towards Debye length radius nanowires for ultraviolet photodetection. J. Mater. Chem. C 5, 10087–10093 (2017)

    Article  Google Scholar 

  7. Y. Ji, One-step method for growing of large scale ZnO nanowires on zinc foil. Mater. Lett. 138, 92–95 (2015)

    Article  Google Scholar 

  8. M. Hakamada, M. Yuasa, T. Yoshida, F. Hirashima, M. Mabuchi, Visible-light photocatalysis of ZnO deposited on nanoporous Au. Appl. Phys. A 114, 1061–1066 (2014)

    Article  ADS  Google Scholar 

  9. Z. Liang, Q. Zhang, L. Jiang, G. Cao, ZnO cathode buffer layers for inverted polymer solar cells. Energy Environ. Sci. 8, 3442–3476 (2015)

    Article  Google Scholar 

  10. S.C. Rai, K. Wang, Y. Ding, J.K. Marmon, M. Bhatt, Y. Zhang, W. Zhou, Z.L. Wang, Piezo-phototronic effect enhanced UV/Visible photodetector based on fully wide band gap type-II ZnO/ZnS core/shell nanowire array. ACS Nano 9, 6419–6427 (2015)

    Article  Google Scholar 

  11. Y.-C. Yao, Z.-P. Yang, J.-M. Hwang, Y.-L. Chuang, C.-C. Lin, J.-Y. Haung, C.-Y. Chou, J.-K. Sheu, M.-T. Tsai, Y.-J. Lee, Enhancing UV-emissions through optical and electronic dual-function tunings of Ag nanoparticles hybridized with n-ZnO nanorods/p-GaN heterojunction light-emitting diodes. Nanoscale 8, 4463–4474 (2016)

    Article  ADS  Google Scholar 

  12. J. Guo, J. Zhang, M. Zhu, D. Ju, H. Xu, B. Cao, High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sens. Actuators B Chem. 199, 339–345 (2014)

    Article  Google Scholar 

  13. S.B. Bashar, M. Suja, W. Shi, J. Liu, Enhanced random lasing from distributed Bragg reflector assisted Au–ZnO nanowire Schottky diode. Appl. Phys. Lett. 109, 192101 (2016)

    Article  ADS  Google Scholar 

  14. G. Li, L. Meng, X. Zhu, W. Gao, Y. Qin, L. Chen, Clarifying the high on/off ratio mechanism of nanowire UV photodetector by characterizing surface barrier height. Nanoscale 10, 2242–2248 (2018)

    Article  Google Scholar 

  15. J.B.K. Law, J.T.L. Thong, Simple fabrication of a ZnO nanowire photodetector with a fast photoresponse time. Appl. Phys. Lett. 88, 133114 (2006)

    Article  ADS  Google Scholar 

  16. K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793–1798 (2007)

    Article  ADS  Google Scholar 

  17. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4, 455–459 (2005)

    Article  ADS  Google Scholar 

  18. S. Li, X. Zhang, L. Zhang, Sb2O3-induced tapered ZnO nanowire arrays: the kinetics of radial growth and morphology control. J. Phys. Chem. C 114, 10379–10385 (2010)

    Article  Google Scholar 

  19. S. Chen, J. Chen, J. Liu, J. Qi, Y. Wang, Enhanced field emission from ZnO nanowire arrays utilizing MgO buffer between seed layer and silicon substrate. Appl. Surf. Sci. 387, 103–108 (2017)

    Article  ADS  Google Scholar 

  20. L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions. Adv. Mater. 15, 464–466 (2003)

    Article  Google Scholar 

  21. S. Guo, X. Zhao, W. Zhang, W. Wang, Optimization of electrolyte to significantly improve photoelectrochemical water splitting performance of ZnO nanowire arrays. Mater. Sci. Eng. B 227, 129–135 (2018)

    Article  Google Scholar 

  22. Z. Yuan, Low-temperature growth of well-aligned ZnO nanowire arrays by chemical bath deposition for hybrid solar cell application. J. Mater. Sci. Mater. Electron. 25, 2248–2252 (2014)

    Article  Google Scholar 

  23. M. Willander, L.L. Yang, A. Wadeasa, S.U. Ali, M.H. Asif, Q.X. Zhao, O. Nur, Zinc oxide nanowires: controlled low temperature growth and some electrochemical and optical nano-devices. J. Mater. Chem. 19, 1006–1018 (2009)

    Article  Google Scholar 

  24. L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y. Zhang, R.J. Saykally, P. Yang, Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 42, 3031–3034 (2003)

    Article  Google Scholar 

  25. M. Kokotov, G. Hodes, Reliable chemical bath deposition of ZnO films with controllable morphology from ethanolamine-based solutions using KMnO4 substrate activation. J. Mater. Chem. 19, 3847–3854 (2009)

    Article  Google Scholar 

  26. R. Bahramian, H. Eshghi, A. Moshaii, Influence of annealing temperature on morphological, optical and UV detection properties of ZnO nanowires grown by chemical bath deposition. Mater. Design 107, 269–276 (2016)

    Article  Google Scholar 

  27. Y. Sun, X. Gu, Y. Zhao, L. Wang, Y. Qiang, Temperature-dependent photoluminescence analysis of ZnO nanowire array annealed in air. Superlattices Microstruct. 117, 520–526 (2018)

    Article  ADS  Google Scholar 

  28. E. Muchuweni, T.S. Sathiaraj, H. Nyakotyo, Effect of annealing on the microstructural, optical and electrical properties of ZnO nanowires by hydrothermal synthesis for transparent electrode fabrication. Mater. Sci. Eng. B 227, 68–73 (2018)

    Article  Google Scholar 

  29. Z. Yuan, J. Yao, Growth of well-aligned ZnO nanorod arrays and their application for photovoltaic devices. J. Electron. Mater. 46, 6461–6465 (2017)

    Article  ADS  Google Scholar 

  30. L. Yin, H. Ding, Z. Yuan, W. Huang, C. Shuai, Z. Xiong, J. Deng, T. Lv, A simple and transparent well-aligned ZnO nanowire array ultraviolet photodetector with high responsivity. Opt. Mater. 80, 149–153 (2018)

    Article  ADS  Google Scholar 

  31. S.W. Xue, X.T. Zu, W.L. Zhou, H.X. Deng, X. Xiang, L. Zhang, H. Deng, Effects of post-thermal annealing on the optical constants of ZnO thin film. J. Alloy. Compd. 448, 21–26 (2008)

    Article  Google Scholar 

  32. K.T. Park, F. Xia, S.W. Kim, S.B. Kim, T. Song, U. Paik, W.I. Park, Facile synthesis of ultrathin ZnO nanotubes with well-organized hexagonal nanowalls and sealed layouts: applications for lithium ion battery anodes. J. Phys. Chem. C 117, 1037–1043 (2013)

    Article  Google Scholar 

  33. R. Viswanatha, S. Chakraborty, S. Basu, D.D. Sarma, Blue-emitting copper-doped zinc oxide nanocrystals. J. Phys. Chem. C 110, 22310–22312 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Natural Science Foundation of Shaanxi Province (Grant No. 2017JM6090), the Natural Science Foundation of the Education Bureau of Shaanxi Province, China (Grant No. 16JK1135), the Natural Science Foundation of Shaanxi University of Technology (Grant No. SLGQD-2017-05), and the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices (Grant No. KFJJ201602).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolin Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, Y., Yuan, Z., Fan, J. et al. Annealing temperature-dependent morphology, structure, and optical properties of well-aligned ZnO nanowire arrays. Appl. Phys. A 124, 655 (2018). https://doi.org/10.1007/s00339-018-2081-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2081-8

Navigation