Skip to main content
Log in

Monte Carlo calculation of the backscattering coefficient of thin films of low on high atomic number materials and the reverse as a function of the incident electron energy and film thickness

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this study a CASINO Monte Carlo model has been used to investigate the behavior of the backscattering coefficient (η) for C-layer deposited on Au-substrate as well as for Au-layer deposited on C-substrate as a function of top-layer thickness and primary electron energy (0.5–10 keV). As the top-layer thickness increases and primary electron energy decreases, η-values became more affected by the material of the top layer. It depends on the maximum primary electron range compared with the thickness of the deposited top layer. The backscattering coefficient of a thin C-layer deposited on Au-substrate sharply increases toward Au values as the primary electron energy increases following the C bulk values. However, in the case of a thin Au-layer deposited on C-substrate, the backscattering coefficient starts with a value of that of a pure Au and increases to reach its maximum value and then starts decreasing toward the values of the C-substrate. The minimum and the maximum on the results are shifted toward the high energies as the top-layer thickness increases. The energy distribution of the backscattered electrons emerged from a thin 5 nm C-layer deposited on Au-substrate as well as from a thin 5 nm Au-layer deposited on C-substrate has been investigated as a function of primary electron energy. The results show the dependence of the backscattered electron energy distribution as well as the η-values on the differential scattering cross section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Reimer, Scanning Electron Microscopy, Physics of Image Formation and Microanalysis, 2nd edn. (Springer, Berlin, Germany, 1998)

    Google Scholar 

  2. A.M.D. Assad, M.M. El-Gomati, Scanning Microsc. 12, 185 (1998)

    Google Scholar 

  3. M.M. El-Gomati, A.M.D. Assa’d, Microchim. Acta 15, 325 (1998)

    Google Scholar 

  4. M.M. El-Gomati, C.G.H. Walker, A.M.D. Assa’d, M. Zadrazil, Scanning 30, 2 (2008)

    Article  Google Scholar 

  5. G.H. Walker, M.M. El-Gomati, A.M.D. Assa’d, M. Zadražil, Scanning 30, 365 (2008)

    Article  Google Scholar 

  6. M. Dapor, N. Bazzanella, L. Toniutti, A. Miotello, M. Crivellari, S. Gialanella, Surf. Interface Anal. 45, 677 (2013)

    Article  Google Scholar 

  7. T. Gineste, M. Belhaj, G. Teyssedre, J. Puech, Appl. Surf. Sci. 359, 398 (2015)

    Article  ADS  Google Scholar 

  8. R. Wuhrer, K. Moran, I.O.P. Conf. Ser. Mater. Sci. Eng. 109 (2016)

  9. D.C. Joy, J. Microsc. 147, 51 (1987)

    Article  Google Scholar 

  10. C.G.H. Walker, J.A.D. Matthew, M.M. El-Gomati, Scanning 36, 241 (2014)

    Google Scholar 

  11. CASINO model of Monte Carlo Simulation of Electron Trajectory in Solid. http://www.gel.usherbrooke.ca/casino/index.html

  12. D. Drouin, A.R. Couture, D. Joly, X. Tastet, A. Vincent, R.M. Gauvin, Scanning 29, 92 (2007)

    Article  Google Scholar 

  13. N.F. Mott, H.S.W. Massey, Theory of Atomic Collision (Oxford University Press, London, 1965)

    Google Scholar 

  14. R. Gauvin, D. Drouin, Scanning 15, 140 (1993)

    Article  Google Scholar 

  15. R. Browning, T.Z. Li, B. Chui, J. Ye, R.F.W. Pease, Z. Czyzewski, D.C. Joy, J. Appl. Phys. 76, 2016 (1994)

    Article  ADS  Google Scholar 

  16. K. Murata, D.F. Kyser, Adv. Electron. Electron Phys. 69, 175 (1987)

    Article  Google Scholar 

  17. Z. Czyzewski, D. O’Neill MacCallum, A. Romig, D.C. Joy, J. Appl. Phys. 68, 3066 (1990)

    Article  ADS  Google Scholar 

  18. D.C. Joy, S. Luo, Scanning 11, 176 (1989)

    Article  Google Scholar 

  19. H. Bethe, Ann. Phys. 5, 325 (1930)

    Article  Google Scholar 

  20. H. Demers, N. Poirier-Demers, A.R. Couture, D. Joly, M. Guilmain, N. de Jonge, D. Drouin, Scanning 33, 135 (2011)

    Article  Google Scholar 

  21. I.M. Bronstein, B.S. Fraiman Vtorichnaya Elektronnaya Emissiya. (Secondary electron emission) (Nauka-Moskva, (1969))

  22. J. Pierron, C. Inguimbert, M. Belhaj, M. Raine, J. Puech, 16th European Conference on Radiation and Its Effects on Components and Systems (RADECS), Bremen, Germany (2016)

  23. E. Sheikin, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 319, 1 (2014)

    Article  ADS  Google Scholar 

  24. F. Salvat, A. Jablonski, C.J. Powell, Comput. Phys. Commun. 165, 157 (2005)

    Article  ADS  Google Scholar 

  25. C.G.H. Walker, F. Luděk, I. Müllerová, Scanning 36, 802 (2016)

    Article  Google Scholar 

  26. A. Jablonski, F. Salvant, C.J. Powell, NIST Electron Scattering Cross Section Database-Version 3.2 (Notional Institute of Standards and Technology, Gaithersburg, 2010)

    Google Scholar 

  27. M. Dapor, J. Appl. Phys. 95, 718 (2004)

    Article  ADS  Google Scholar 

  28. https://www.microtonano.com/TIN-Target-material-selection-for-coating-SEM-samples-using-an-SEM-sputter-coater.php

  29. K. Leosson, A.S. Ingason, B. Agnarsson, A. Kossoy, S. Olafsson, M.C. Gather, Nanophotonics 2, 3 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author would like to thank Prof. M. M. El-Gomati for his comprehensive discussion to improve the present article. The author would also like to thank the Universite de Sherbrooke group for providing a free download CASINO Monte Carlo model.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. D. Assa’d.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assa’d, A.M.D. Monte Carlo calculation of the backscattering coefficient of thin films of low on high atomic number materials and the reverse as a function of the incident electron energy and film thickness. Appl. Phys. A 124, 699 (2018). https://doi.org/10.1007/s00339-018-2073-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2073-8

Navigation