Skip to main content
Log in

Two-Stream Model of Monoenergetic Electron-Beam Backscattering: Application to Problems of the Diagnostics of Thin-Film Structures

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract—

The energy spectra of electrons reflected from individual layers located inside a multilayer thin-film target are calculated as applied to problems of the backscattered electron spectroscopy method (BESM). The structure of analytical expressions describing the distribution of the electron-backscattering coefficient over the sample depth is refined. A formula for the two-dimensional polar-angle distribution of backscattered electrons after their exit from a thin-film target with a given thickness is obtained. An algorithm for calculations required to construct the energy distributions of backscattered electrons is developed for a given angular position of the input diaphragm of an analyzer spectrometer. This makes it possible to bring our calculations closer to the actual conditions for recording backscattered electrons. The results of comprehensive verification of the obtained relations based on comparing our model calculations of the energy distributions of backscattered electrons with the experimental spectra of free films, bulk samples, and a multilayer thin-film sample on a massive substrate are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. V. Spivak, E. I. Rau, M. N. Filippov, and A. Yu. Sasov, Modern Electron Microscopy in Studies of Matter (Nauka, Moscow, 1982), p. 5 [in Russian].

    Google Scholar 

  2. V. V. Aristov, N. N. Dremova, S. I. Zaitsev, E. I. Rau, et al., Dokl. Akad. Nauk SSSR 301, 611 (1988).

    CAS  Google Scholar 

  3. N. N. Dremova, S. I. Zaitsev, E. I. Rau, and E. B. Yakimov, Izv. Ross. Akad. Nauk. Ser. Fiz., 57 (8), 9 (1993).

    Google Scholar 

  4. N. N. Mikheev, V. I. Petrov, and M. A. Stepovich, Izv. Ross. Akad. Nauk. Ser. Fiz., 59 (2), 144 (1995).

    CAS  Google Scholar 

  5. N. N. Mikheev and M. A. Stepovich, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 1, 6 (1998).

  6. N. N. Mikheev, N. A. Nikiforova, and A. S. Ganchev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (5), 923 (2015). https://doi.org/10.1134/S1027451015050110

    Article  CAS  Google Scholar 

  7. N. N. Mikheev, Poverkhn.: Rentgenovskie, Sinkhrotronnye Neitr. Issled., No. 10, 37 (1998).

  8. N. N. Mikheev, Bull. Russ. Acad. Sci.: Phys. 64 (11), 2137 (2000).

    CAS  Google Scholar 

  9. N. N. Mikheev, M. A. Stepovich, and S. N. Yudina, J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 3 (2), 218 (2009).

    Article  Google Scholar 

  10. N. N. Mikheev, J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 4, 289 (2010).

    Article  Google Scholar 

  11. H. Niedrig, J. Appl. Phys. 53 (4), 15 (1982).

    Article  Google Scholar 

  12. N. N. Mikheev, J. Surf. Invest.: X-Ray Synchrotron Neutron Tech. 13, 719 (2019). https://doi.org/10.1134/S0207352819080109

    Article  CAS  Google Scholar 

  13. N. N. Mikheev and A. S. Kolesnik, J. Surf. Invest.: X‑Ray Synchrotron Neutron Tech. 11 (6), 1265 (2017). https://doi.org/10.1134/S1027451017050305

    Article  CAS  Google Scholar 

  14. N. N. Mikheev, M. A. Stepovich, and E. V. Shirokova, Bull. Russ. Acad. Sci.: Phys. 74 (7), 1002 (2010).

    Article  Google Scholar 

  15. E. I. Rau and R. A. Senov, Izv. Ross. Akad. Nauk, Ser. Fiz. 68 (9), 1342 (2004).

    CAS  Google Scholar 

  16. H. Niedrig and P. Sieber, Z. Angew. Phys 31, 327 (1971).

    Google Scholar 

  17. V. E. Cosslett and R. N. Thomas, Brit. J. Appl. Phys. 16, 779 (1965).

    Article  CAS  Google Scholar 

  18. H. Kulenkampff and W. Spira, Z. Phys. 137, 414 (1954).

    Google Scholar 

  19. F. J. Hohn and H. Niedrig, Optik 35, 290 (1972).

    CAS  Google Scholar 

  20. J. L. Balladore, G. Soum, J. P. Martinez, and F. Arnal, J. Microsc. Spectrosc. Electron. 5, 371 (1980).

    CAS  Google Scholar 

  21. H. E. Bishop, in Foundations of X-Ray Microanalysis, Ed. by I. B. Borovskii (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  22. H. Kanter, Ann. Phys. (N. Y., NY, U. S.) 20, 144 (1957).

    CAS  Google Scholar 

  23. M. I. Ryazanov and I. S. Tilinin, Surface Analysis Based on Particle Backscattering (Energoatomizdat, Moscow, 1985) [in Russian].

    Google Scholar 

  24. H. Kulenkampff and K. Ruttiger, Z. Phys. 152, 249 (1958).

    Article  CAS  Google Scholar 

  25. S. Yu. Kupreenko, N. A. Orlikovskii, E. I. Rau, A. M. Tagachenkov, and A. A. Tatarintsev, Tech. Phys. 60, 1515 (2015).

    Article  CAS  Google Scholar 

Download references

Funding

The work was supported by the Ministry of Science and Higher Education within the framework of works in accordance with the State Assignment of the Federal Research Center “Crystallography and Photonics” of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Mikheev.

Additional information

Translated by L. Kulman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mikheev, N.N. Two-Stream Model of Monoenergetic Electron-Beam Backscattering: Application to Problems of the Diagnostics of Thin-Film Structures. J. Surf. Investig. 14, 1309–1315 (2020). https://doi.org/10.1134/S1027451020060385

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451020060385

Keywords

Navigation