Skip to main content
Log in

Influence of Cu doping and thickness on non-Fermi liquid behaviour and metallic conductance in epitaxial PrNiO3 thin films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We have deposited two series (12 and 5 nm) of PrNi1−xCuxO3 (x = 0–0.1) thin films on (LaAlO3)0.3(Sr2Al-TiO6)0.7—(LSAT) single crystal substrate using pulsed laser deposition and studied the effect of Cu doping and thickness variation on the electronic properties. For series-1 (12 nm), the undoped PrNiO3 film shows a metal-to-insulator phase transition around 100K. A fractional doping of 1.0 atomic percentage of Cu at Ni-site is able to suppress the insulating phase completely and thereby driving the system towards steady metallicity throughout the temperature range below 300 K. However, at lower dimensions in series-2 with 5 nm thickness, these effects of Cu doping and metallicity are reduced. Resistivity data of all the films fit to power law equation show non-Fermi Liquid behaviour (NFL). A switching from one type of NFL to another type has been observed due to both, Cu doping and thickness variation. Further, the fitting parameters show a systemic variation with increasing Cu content indicating that the carrier injection by even a fractional Cu doping is highly effective in bringing metallicity in the system due to band filling effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Yang, C. Ko, S. Ramanathan, Annu. Rev. Mater. Res. 41, 337 (2011)

    Article  ADS  Google Scholar 

  2. G. Catalan, Phase Transit. 81, 729 (2008)

    Article  Google Scholar 

  3. E. Mikheev, A.J. Hauser, B. Himmetoglu, N.E. Moreno, A. Janotti, C.G. Van de Walle, S. Stemmer, Sci. Adv. 1, e1500797 (2015)

    Article  ADS  Google Scholar 

  4. A. Venimadhav, I. Chaitanya Lekshmi, M.S. Hegde, Mater. Res. Bull. 37, 201 (2002)

    Article  Google Scholar 

  5. M. Chandra, S. Das, F. Aziz, M. Prajapat, K.R. Mavani, J. Alloys Compd. 696, 423 (2017)

    Article  Google Scholar 

  6. J. Liu, M. Kargarian, M. Kareev, B. Gray, P.J. Ryan, A. Cruz, N. Tahir, Y.-D. Chuang, J. Guo, J.M. Rondinelli, J.W. Freeland, G.A. Fiete, J. Chakhalian, Nat. Commun. 4, 2714 (2013)

    Article  Google Scholar 

  7. D. Yao, L. Shi, S. Zhou, H. Liu, Y. Wang, J. Zhao, Y. Li, J. Phys. Appl. Phys. 49, 125301 (2016)

    Article  ADS  Google Scholar 

  8. M.W. Zhu, H.L. Wang, H. Lei, Y.J. Zhang, N. Jia, Z.J. Wang, Appl. Phys. A 122, (2016)

  9. X. Granados, J. Fontcuberta, X. Obradors, J.B. Torrance, Phys. Rev. B 46, 15683 (1992)

    Article  ADS  Google Scholar 

  10. M.L. Medarde, J. Phys. Condens. Matter 9, 1679 (1997)

    Article  ADS  Google Scholar 

  11. S. Middey, J. Chakhalian, P. Mahadevan, J.W. Freeland, A.J. Millis, D.D. Sarma, Annu. Rev. Mater. Res. 46, 305 (2016)

    Article  ADS  Google Scholar 

  12. J.-S. Zhou, J.B. Goodenough, B. Dabrowski, Phys. Rev. B 67, 020404 (2003)

    Article  ADS  Google Scholar 

  13. J.B. Torrance, P. Lacorre, A.I. Nazzal, E.J. Ansaldo, C. Niedermayer, Phys. Rev. B 45, 8209 (1992)

    Article  ADS  Google Scholar 

  14. G. Catalan, R.M. Bowman, J.M. Gregg, J. Appl. Phys. 87, 606 (1999)

    Article  ADS  Google Scholar 

  15. R. Jaramillo, S.D. Ha, D.M. Silevitch, S. Ramanathan, Nat. Phys. 10, 304 (2014)

    Article  Google Scholar 

  16. M. Chandra, S. Das, F. Aziz, S. Tripathi, K.R. Mavani, Solid State Commun. 219, 16 (2015)

    Article  ADS  Google Scholar 

  17. J.L. García-Muñoz, M. Suaaidi, M.J. Martínez-Lope, J.A. Alonso, Phys. Rev. B Condens. Matter 52, 13563 (1995)

    Article  ADS  Google Scholar 

  18. J. Blasco, J. García, Solid State Commun. 91, 381 (1994)

    Article  ADS  Google Scholar 

  19. J. Pérez, J. Stankiewicz, J. Blasco, M. Castro, J. García, J. Phys. Condens. Matter 8, 10393 (1996)

    Article  ADS  Google Scholar 

  20. V.E. Phanindra, P. Agarwal, D.S. Rana, Phys. Rev. Mater. 2, 015001 (2018)

    Article  Google Scholar 

  21. V.E. Phanindra, S. Das, K.S. Kumar, P. Agarwal, R. Rana, D.S. Rana, Phys. Rev. B 95, 085114 (2017)

    Article  ADS  Google Scholar 

  22. M. Chandra, F. Aziz, S. Tripathi, R. Rana, D.S. Rana, K.R. Mavani, J. Appl. Phys. 115, 093701 (2014)

    Article  ADS  Google Scholar 

  23. J. Shi, Y. Zhou, S. Ramanathan, Nat. Commun. 5, 4860 (2014)

    Article  ADS  Google Scholar 

  24. L. Wang, L. Chang, X. Yin, A. Rusydi, L. You, Y. Zhou, L. Fang, J. Wang, J. Phys. Condens. Matter 29, 025002 (2017)

    Article  ADS  Google Scholar 

  25. J. Vučičević, D. Tanasković, M.J. Rozenberg, V. Dobrosavljević, Phys. Rev. Lett. 114, 246402 (2015)

    Article  ADS  Google Scholar 

  26. M. Gurvitch, Phys. Rev. B 24, 7404 (1981)

    Article  ADS  Google Scholar 

  27. M. Calandra, O. Gunnarsson, EPL Europhys. Lett. 61, 88 (2003)

    Article  ADS  Google Scholar 

  28. N.E. Hussey, K. Takenaka, H. Takagi, Philos. Mag. 84, 2847 (2004)

    Article  ADS  Google Scholar 

  29. O. Gunnarsson, M. Calandra, J.E. Han, Rev. Mod. Phys. 75, 1085 (2003)

    Article  ADS  Google Scholar 

  30. P.B. Allen, B. Chakraborty, Phys. Rev. B 23, 4815 (1981)

    Article  ADS  Google Scholar 

  31. E. Sakai, K. Yoshimatsu, M. Tamamitsu, K. Horiba, A. Fujimori, M. Oshima, H. Kumigashira, Appl. Phys. Lett. 104, 171609 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The work is supported by BRNS, India though project number 37(3)/14/28/2017-BRNS/37225 of KRM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Mavani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, E., Harisankar, S., Soni, K. et al. Influence of Cu doping and thickness on non-Fermi liquid behaviour and metallic conductance in epitaxial PrNiO3 thin films. Appl. Phys. A 124, 614 (2018). https://doi.org/10.1007/s00339-018-2038-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2038-y

Navigation