Skip to main content
Log in

Magnetic and electric characterizations of sol–gel-derived NaFe(WO4)2 rods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Wolframite-structured NaFe(WO4)2 (NFeW) micron sized particles with rod-type morphology were synthesized by sol–gel method with lower temperature and calcination time. The crystallization and melting temperature of the NFeW were noticed in thermal analysis. Rietveld refinement of powder X-ray diffraction data confirms the formation of high purity NFeW with monoclinic structure of P2/c space group. The evolution of wolframite structure with respect to different thermal treatments was verified by Fourier transform infrared and Raman analysis. The optical band-gap of NFeW was calculated to be 2.3 eV, a shift towards lower energy compared to other double tungstates. The field-emission scanning electron microscope images revealed rod-shape topography of the NFeW with a uniform size. Magnetic hysteresis measurements of NFeW powder exhibited the paramagnetic ordering at room temperature and antiferromagnetic ordering below 10 K. This antiferromagnetic ordering was further confirmed by Neel’s transitions point in both zero field cooled and field cooled magnetization measurements. Electron paramagnetic resonance measurement of NFeW showed Fe3+ ion symmetry with environment and interaction between Fe3+ ions. From the impedance spectroscopy analysis, the ac conductivity contribution was interpreted using the modified Jonscher’s power law and the activation energy was found to be 0.84 eV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. A.A. Kaminskii, Laser crystals and ceramics: recent advances. Laser Photon. Rev. 1, 93 (2007). https://doi.org/10.1002/lpor.200710008

    Article  ADS  Google Scholar 

  2. N. Faure, C. Borel, M. Couchaud, G. Basset, R. Templier, C. Wyon, Optical properties and laser performance of neodymium doped scheelites CaWO4 and NaGd(WO4)2. Appl. Phys. B 63, 593 (1996). https://doi.org/10.1007/bf01830998

    Article  ADS  Google Scholar 

  3. J.H. Huang, X.H. Gong, Y.J. Chen, Y.F. Lin, J.S. Liao, X.Y. Chen, Z.D. Luo, Y.D. Huang, Polarized spectral properties of Er3+ ions in NaGd(WO4)2 crystal. Appl. Phys. B 89, 73 (2007). https://doi.org/10.1007/s00340-007-2767-7

    Article  ADS  Google Scholar 

  4. C. Cascales, M.D. Serrano, F. Esteban-Betegón, C. Zaldo, R. Peters, K. Petermann, G. Huber, L. Ackermann, D. Rytz, C. Dupré, M. Rico, J. Liu, U. Griebner, V. Petrov, Structural, spectroscopic, and tunable laser properties of Yb3+-doped NaGd(WO4)2. Phys. Rev. B 74, 174114 (2006)

    Article  ADS  Google Scholar 

  5. M. Rico, J. Liu, U. Griebner, V. Petrov, M.D. Serrano, F. Esteban-Betegón, C. Cascales, C. Zaldo, Tunable laser operation of ytterbium in disordered single crystals of Yb:NaGd(WO4)2. Opt. Express 12, 5362 (2004). https://doi.org/10.1364/opex.12.005362

    Article  ADS  Google Scholar 

  6. A. Durairajan, D. Thangaraju, M. Valente, S. Moorthy Babu, Structural, morphological, vibrational, and photoluminescence study of sol–gel-synthesized Tm3+:NaGd(WO4)2 blue phosphors. J. Electron. Mater. 44, 4199 (2015). https://doi.org/10.1007/s11664-015-4002-3

    Article  ADS  Google Scholar 

  7. A. Durairajan, D. Balaji, K.K. Rasu, S. Moorthy Babu, Y. Hayakawa, M.A. Valente, Sol–gel synthesis and photoluminescence studies on colour tuneable Dy3+/Tm3+ co-doped NaGd(WO4)2 phosphor for white light emission. J. Lumin. 157, 357 (2015). https://doi.org/10.1016/j.jlumin.2014.09.024

    Article  Google Scholar 

  8. A. Durairajan, D. Thangaraju, S. Moorthy Babu, M.A. Valente, Luminescence characterization of sol–gel derived Pr3+ doped NaGd(WO4)2 phosphors for solid state lighting applications. Mater. Chem. Phys. 179, 295 (2016). https://doi.org/10.1016/j.matchemphys.2016.05.042

    Article  Google Scholar 

  9. A. Durairajan, J. Suresh Kumar, D. Thangaraju, M.A. Valente, S. Moorthy Babu, Photoluminescence properties of sub-micron NaGd1− xEux(WO4)2 red phosphor for solid state lightings application: derived by different synthesis routes. Superlattices Microstruct. 93, 308 (2016). https://doi.org/10.1016/j.spmi.2016.03.025

    Article  ADS  Google Scholar 

  10. D. Thangaraju, S. Moorthy Babu, A. Durairajan, D. Balaji, P. Samuel, Y. Hayakawa, Growth, vibrational and luminescence analysis of monoclinic KGd(1–x)Prx(WO4)2 (x = 0.005, 0.02, 0.05) single crystals. J. Cryst. Growth 362, 319 (2013). https://doi.org/10.1016/j.jcrysgro.2011.10.061

    Article  ADS  Google Scholar 

  11. D. Thangaraju, A. Durairajan, D. Balaji, S. Moorthy Babu, Y. Hayakawa, Novel KGd1–(x+y)EuxBiy(W1−zMozO4)2 nanocrystalline red phosphors for tricolor white LEDs. J. Lumin. 134, 244 (2013). https://doi.org/10.1016/j.jlumin.2012.08.038

    Article  Google Scholar 

  12. I. Jendoubi, R. Ben Smail, M. Maczka, M.F. Zid (2018) Optical and electrical properties of the yavapaiite-like molybdate NaAl(MoO4)2. Ionics. https://doi.org/10.1007/s11581-018-2490-x

    Article  Google Scholar 

  13. P.K. Tawalare, V.B. Bhatkar, R.A. Talewar, C.P. Joshi, S.V. Moharil, Host sensitized NIR emission in rare-earth doped NaY(MoO4)2 phosphors. J. Alloys Compd. 732, 64 (2018). https://doi.org/10.1016/j.jallcom.2017.10.169

    Article  Google Scholar 

  14. X. Tan, Y. Wang, M. Zhang, Solvothermal synthesis, luminescence and energy transfer of Dy3+ and Sm3+ doped NaLa(WO4)2 nanocubes. J. Photochem. Photobiol. A 353, 65 (2018). https://doi.org/10.1016/j.jphotochem.2017.11.002

    Article  Google Scholar 

  15. P.V. Klevtsov, R.F. Klevtsova, Single-crystal synthesis and investigation of the double tungstates NaR3+ (WO4)2 where R3+ = Fe, SC, Ga, and In. J. Solid State Chem. 2, 278 (1970). https://doi.org/10.1016/0022-4596(70)90080-0

    Article  ADS  Google Scholar 

  16. L. Nyam-Ochir, H. Ehrenberg, A. Buchsteiner, A. Senyshyn, H. Fuess, D. Sangaa, The magnetic structures of double tungstates, NaM(WO4)2, M = Fe, Cr: examples for superexchange couplings mediated by [NaO6]-octahedra. J. Magn. Magn. Mater. 320, 3251 (2008). https://doi.org/10.1016/j.jmmm.2008.06.029

    Article  ADS  Google Scholar 

  17. K.G. Dergachev, M.I. Kobets, E.N. Khatsko, Magnetic resonance studies of the low-dimensional magnet NaFe(WO4)2. Low Temp. Phys. 31, 402 (2005). https://doi.org/10.1063/1.1925387

    Article  ADS  Google Scholar 

  18. S. Holbein, M. Ackermann, L. Chapon, P. Steffens, A. Gukasov, A. Sazonov, O. Breunig, Y. Sanders, P. Becker, L. Bohatý, T. Lorenz, M. Braden, Strong magnetoelastic coupling at the transition from harmonic to anharmonic order in NaFe(WO4)2 with 3d5 configuration. Phys. Rev. B 94, 104423 (2016)

    Article  ADS  Google Scholar 

  19. J.A. Alonso, M.J. Martínez-Lope, M.T. Casais, M.T. Fernández-Díaz, Evolution of the Jahn-Teller distortion of MnO6 octahedra in RMnO3 perovskites (R = Pr, Nd, Dy, Tb, Ho, Er, Y): a neutron diffraction study. Inorg. Chem. 39, 917 (2000). https://doi.org/10.1021/ic990921e

    Article  Google Scholar 

  20. K. Taniguchi, N. Abe, T. Takenobu, Y. Iwasa, T. Arima, Ferroelectric polarization flop in a frustrated magnet MnWO4 induced by a magnetic field. Phys. Rev. Lett. 97, 097203 (2006)

    Article  ADS  Google Scholar 

  21. K. Taniguchi, N. Abe, S. Ohtani, T. Arima, Magnetoelectric memory effect of the nonpolar phase with collinear spin structure in multiferroic MnWO4. Phys. Rev. Lett. 102, 147201 (2009)

    Article  ADS  Google Scholar 

  22. V.P. Sakhnenko, N.V. Ter-Oganessian, Phenomenological theory of phase transitions in multiferroic MnWO4: magnetoelectricity and modulated magnetic order. J. Phys. Condens. Matter. 22, 226002 (2010)

    Article  ADS  Google Scholar 

  23. Y.-X. Zhou, H.-B. Yao, Q. Zhang, J.-Y. Gong, S.-J. Liu, S.-H. Yu, Hierarchical FeWO4 microcrystals: solvothermal synthesis and their photocatalytic and magnetic properties. Inorg. Chem. 48, 1082 (2009). https://doi.org/10.1021/ic801806r

    Article  Google Scholar 

  24. W. Hans (1970) Magnetic structure on CoWO4, NiWO4 and CuWO4. Solid State Commun. 8: 2071. https://doi.org/10.1016/0038-1098(70)90221-8

    Article  ADS  Google Scholar 

  25. J. Hanuza, M. Mączka, K. Hermanowicz, P.J. Deren, W. Strek, L. Folcik, H. Drulis, Spectroscopic properties and magnetic phase transitions in scheelite MICr(MoO4)2 and wolframite MICr(WO4)2 crystals, where MI= Li, Na, K, and Cs. J. Solid State Chem. 148, 468 (1999). https://doi.org/10.1006/jssc.1999.8482

    Article  ADS  Google Scholar 

  26. A. Durairajan, D. Thangaraju, D. Balaji, S. Moorthy Babu, Sol–gel synthesis and characterizations of crystalline NaGd(WO4)2 powder for anisotropic transparent ceramic laser application. Opt. Mater. 35, 740 (2013)

    Article  ADS  Google Scholar 

  27. V.A. Morozov, B.I. Lazoryak, S.Z. Shmurak, A.P. Kiselev, O.I. Lebedev, N. Gauquelin, J. Verbeeck, J. Hadermann, G.V. Tendeloo, Influence of the structure on the properties of NaxEuy(MoO4)2 red phosphors. Chem. Mater. 26, 3238 (2014). https://doi.org/10.1021/cm500966g

    Article  Google Scholar 

  28. V.R.M. Melo, R.L.B.A. Medeiros, R.M. Braga, H.P. Macedo, J.A.C. Ruiz, G.T. Moure, M.A.F. Melo, D.M.A. Melo, Study of the reactivity of double-perovskite type oxide La1−xMxNiO4 (M = Ca or Sr) for chemical looping hydrogen production. Int. J. Hydrogen Energy 43, 1406 (2018). https://doi.org/10.1016/j.ijhydene.2017.11.132

    Article  Google Scholar 

  29. D. Thangaraju, A. Durairajan, S.M. Babu, Y. Hayakawa, Characterization of paramagnetic KHo(WO4)2 nanocrystals: Synthesized by polymeric mixed-metal precursor sol–gel method. J. Alloys Compd. 509, 9890 (2011)

    Article  Google Scholar 

  30. J. Hanuza, M. Ma̧czka, J.H. van der Maas, Vibirationa properties of double tungstates of the MIMIII(WO4)2 family (MI= Li, Na, K and MIII= Bi, Cr). J. Solid State Chem. 117, 177 (1995). https://doi.org/10.1006/jssc.1995.1261

    Article  ADS  Google Scholar 

  31. V.V. Fomichev, O.I. Kondratov, Vibrational spectra of compounds with the wolframite structure. Spectrochim. Acta Part A Mol. Spectrosc. 50, 1113 (1994). https://doi.org/10.1016/0584-8539(94)80034-0

    Article  ADS  Google Scholar 

  32. M.N. Iliev, M.M. Gospodinov, A.P. Litvinchuk, Raman spectroscopy of MnWO4. Phys. Rev. B 80, 212302 (2009)

    Article  ADS  Google Scholar 

  33. L.H. Hoang, N.T.M. Hien, W.S. Choi, Y.S. Lee, K. Taniguchi, T. Arima, S. Yoon, X.B. Chen, I.-S. Yang, Temperature-dependent Raman scattering study of multiferroic MnWO4. J. Raman Spectrosc. 41, 1005 (2010). https://doi.org/10.1002/jrs.2542

    Article  ADS  Google Scholar 

  34. M. Maczka, K. Hermanowicz, P.E. Tomaszewski, M. Zawadzki, J. Hanuza, Synthesis and characterization of NaIn(WO4)2:Cr3+ nanoparticles. Solid State Sci. 10, 61 (2008). https://doi.org/10.1016/j.solidstatesciences.2007.08.003

    Article  ADS  Google Scholar 

  35. A. Durairajan, D. Balaji, K. Kavi Rasu, S. Moorthy Babu, M.A. Valente, D. Thangaraju, Y. Hyakawa, Sol–gel synthesis and photoluminescence analysis of Sm3+:NaGd(WO4)2 phosphors. J. Lumin. 170, 743 (2016). https://doi.org/10.1016/j.jlumin.2015.08.013

    Article  Google Scholar 

  36. S. Dey, R.A. Ricciardo, H.L. Cuthbert, P.M. Woodward, Metal-to-metal charge transfer in AWO4 (A = Mg, Mn, Co, Ni, Cu, or Zn) compounds with the wolframite structure. Inorg. Chem. 53, 4394 (2014). https://doi.org/10.1021/ic4031798

    Article  Google Scholar 

  37. M. Liu, L. Lin, Y. Zhang, S. Li, Q. Huang, V. Ovidiu Garlea, T. Zou, Y. Xie, C. Wang, Y. Lu, L. Yang, Z. Yan, X. Wang, S. Dong, J.-M. Liu, Cycloidal magnetism driven ferroelectricity in double tungstate LiFe(WO4)2. Phys. Rev. B 95, 195134 (2017)

    Article  ADS  Google Scholar 

  38. M.A. Prosnikov, V.Y. Davydov, A.N. Smirnov, M.P. Volkov, R.V. Pisarev, P. Becker, L. Bohatý, Lattice and spin dynamics in a low-symmetry antiferromagnet NiWO4. Phys. Rev. B 96, 014428 (2017)

    Article  ADS  Google Scholar 

  39. M. Wiesmann, H. Ehrenberg, G. Wltschek, P. Zinn, H. Weitzel, H. Fuess, Crystal structures and magnetic properties of the high-pressure modifications of CoMoO4 and NiMoO4. J. Magn. Magn. Mater. 150, L1 (1995). https://doi.org/10.1016/0304-8853(95)00516-1

    Article  ADS  Google Scholar 

  40. X. Jiang, Y. Li, T. Li, Z. Ning, Y. Zhao, M. Liu, C. Wang, X. Lai, J. Bi, D. Gao, Fabrication, microstructures, luminescent and magnetic properties of LiFe(WO4)2 microcrystals. J. Mater. Sci. Mater. Electron. 28, 5584 (2017). https://doi.org/10.1007/s10854-016-6225-3

    Article  Google Scholar 

  41. D.G. McGavin, W.C. Tennant, EPR study of high-spin ferric ion in a completely rhombic environment. Fe3+ in CaWO4. J. Magn. Reson. 61, 321 (1985). https://doi.org/10.1016/0022-2364(85)90086-1

    Article  ADS  Google Scholar 

  42. F.B. Bacha, K. Guidara, M. Dammak, M. Megdiche, AC and DC conductivity study of ceramic compound NaGd(WO4)2 using impedance spectroscopy. J. Mater. Sci. Mater. Electron. 28, 10630 (2017). https://doi.org/10.1007/s10854-017-6838-1

    Article  Google Scholar 

  43. F. Ben Bacha, S. Megdiche Borchani, M. Dammak, M. Megdiche, Optical and complex impedance analysis of double tungstates of mono- and trivalent metals for LiGd(WO4)2 compound. J. Alloys Compd. 712, 657 (2017). https://doi.org/10.1016/j.jallcom.2017.04.107

    Article  Google Scholar 

  44. S. Vinoth Rathan, G. Govindaraj, Electrical relaxation studies on Na2NbMP3O12 (M = Zn, Cd, Pb and Cu) phosphate glasses. Mater. Chem. Phys. 120, 255 (2010). https://doi.org/10.1016/j.matchemphys.2009.10.054

    Article  Google Scholar 

  45. S. Vinoth Rathan, G. Govindaraj, Thermal and electrical relaxation studies in Li(4+x)TixNb1−xP3O12 (0.0 × 1.0) phosphate glasses. Solid State Sci. 12, 730 (2010). https://doi.org/10.1016/j.solidstatesciences.2010.02.030

    Article  ADS  Google Scholar 

  46. C.R. Mariappan, G. Govindaraj, S.V. Rathan, G.V. Prakash, Vitrification of K3M2P3O12 (M = B, Al, Bi) NASICON-type materials and electrical relaxation studies. Mater. Sci. Eng. B 123, 63 (2005). https://doi.org/10.1016/j.mseb.2005.06.022

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by FEDER funds through the COMPETE 2020 Programme and National Funds through FCT—Portuguese Foundation for Science and Technology under the project UID/CTM/50025/2013. One of the authors Dr. A. Durairajan acknowledges the projects BPD/UI96/ 7799/2017 and BPD/UI96/ 7799/2018; 50025: I3N for the post-doctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Durairajan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durairajan, A., Ramana, E.V., Teixeira, B. et al. Magnetic and electric characterizations of sol–gel-derived NaFe(WO4)2 rods. Appl. Phys. A 124, 618 (2018). https://doi.org/10.1007/s00339-018-2028-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-2028-0

Navigation