Skip to main content
Log in

Effect of strain modification on crystallinity and luminescence of InGaN/GaN multiple quantum wells grown by MOCVD

  • Published:
Applied Physics A Aims and scope Submit manuscript

A Publisher Correction to this article was published on 11 September 2018

This article has been updated

Abstract

The effects of compressive strain modification on green-emitting InGaN/GaN multiple quantum wells (MQWs) are comprehensively investigated by inserting a bulk InGaN prestrain underlying layer with different indium doping contents. Systematic measurements of the structural, morphological and optical properties are conducted. Better crystallinities are obtained for both modified samples, in which the density of V-pits is reduced from 4.0 × 108 /cm2 in the original sample to 1.9 × 108 /cm2 and 3.3 × 108 /cm2. Compared with the conventional InGaN/GaN MQWs, the photoluminescence (PL) emission wavelength of the strain-modified MQW structure with an InGaN (In = 0.03) prestrain layer is blueshifted by ~ 6 nm as a result of the reduced built-in piezoelectric field, while the other MQW structure with an InGaN (In = 0.1) layer has an ~ 15 nm redshift, which is attributed to not only the ~ 1% increase in the In content in the QWs and the ~ 0.6 nm increase in the well width due to the composition pulling effect, but also the ~ 0.19 degree of strain relaxation in the InGaN QWs. The low-temperature PL (LTPL) intensities of both samples are approximately twice as large as that of the conventional one, whereas the internal quantum efficiency is three times larger at the maximum. These tremendous improvements are mainly due to the weakened quantum confined stark effect and stronger carrier localization states, as confirmed by LTPL and temperature-dependent PL (TDPL) measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Change history

  • 11 September 2018

    Unfortunately, the original version of this article did not correctly reflect the change of authorship.

References

  1. F. Bernardini, V. Fiorentini, Phys. Status Solidi (B) 216, 391–398 (1999)

    Article  ADS  Google Scholar 

  2. F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B 56, R10024–R10027 (1997)

    Article  ADS  Google Scholar 

  3. S.F. Chichibu, A.C. Abare, M.S. Minsky, S. Keller, S.B. Fleischer, J.E. Bowers, E. Hu, U.K. Mishra, L.A. Coldren, S.P. DenBaars, T. Sota, Appl. Phys. Lett. 73, 2006–2008 (1998)

    Article  ADS  Google Scholar 

  4. S. Kim, K. Lee, K. Park, C.-S. Kim, J. Cryst. Growth 247, 62–68 (2003)

    Article  ADS  Google Scholar 

  5. C.-L. Tsai, G.-C. Fan, Y.-S. Lee, Appl. Phys. A 104, 319–323 (2011)

    Article  ADS  Google Scholar 

  6. A. Avramescu, T. Lermer, J. Müller, C. Eichler, G. Bruederl, M. Sabathil, S. Lutgen, U. Strauss, Appl. Phys. Express 3, 061003–061003 (2010)

    Article  ADS  Google Scholar 

  7. T. Akasaka, H. Gotoh, T. Saito, T. Makimoto, Appl. Phys. Lett. 85, 3089–3091 (2004)

    Article  ADS  Google Scholar 

  8. N. Niu, H. Wang, J. Liu, N. Liu, Y. Xing, J. Han, J. Deng, G. Shen, J. Cryst. Growth 286, 209–212 (2006)

    Article  ADS  Google Scholar 

  9. D.M.V.D. Broeck, D. Bharrat, A.M. Hosalli, N.A. El-Masry, S.M. Bedair, Appl. Phys. Lett. 105, 031107 (2014)

    Article  ADS  Google Scholar 

  10. S. Alam, S. Sundaram, M. Elouneg-Jamroz, X. Li, Y. El Gmili, I.C. Robin, P.L. Voss, J.-P. Salvestrini, A. Ougazzaden, Superlattices Microstruct. 104, 291–297 (2017)

    Article  ADS  Google Scholar 

  11. E.L. Piner, M.K. Behbehani, N.A. El-Masry, F.G. McIntosh, J.C. Roberts, K.S. Boutros, S.M. Bedair, Appl. Phys. Lett. 70, 461–463 (1997)

    Article  ADS  Google Scholar 

  12. J.C.R.C.A. Parker, S.M. Bedair, M.J. Reed, S.X. Liu, Appl. Phys. Lett. 75, 2776–2778 (1999)

    Article  ADS  Google Scholar 

  13. W. Zhao, L. Wang, J. Wang, Z. Hao, Y. Luo, J. Cryst. Growth 327, 202–204 (2011)

    Article  ADS  Google Scholar 

  14. K. Dong-Joon, M. Yong-Tae, S. Keun-Man, P. Seong-Ju, Jpn. J. Appl. Phys. 40, 3085 (2001)

    Article  ADS  Google Scholar 

  15. M.S. Yasutoshi Kawaguchi, K.H. Nobuhiko Sawaki, M. Shimizu, K. Hiramatsu, aN. Sawaki, MRS Proceedings (1996), p. 449

  16. Y. Kawaguchi, M. Shimizu, M. Yamaguchi, K. Hiramatsu, N. Sawaki, W. Taki, H. Tsuda, N. Kuwano, K. Oki, T. Zheleva, R.F. Davis, J. Crystal Growth 189–190, 24–28 (1998)

    Article  ADS  Google Scholar 

  17. S.F. Chichibu, A. Shikanai, K. Wada, T. Mukai, Proc. SPIE Int. Soc. Opt. Eng. 102, 98–106 (1999)

    Google Scholar 

  18. C.P. Massabuau, M.J. Davies, F. Oehler, S.K. Pamenter, E.J. Thrush, M.J. Kappers, A. Kovacs, T. Williams, M.A. Hopkins, C.J. Humphreys, Appl. Phys. Lett. 105, 1017 (2014)

    Article  Google Scholar 

  19. I.-H. Kim, H.-S. Park, Y.-J. Park, T. Kim, Appl. Phys. Lett. 73, 1634–1636 (1998)

    Article  ADS  Google Scholar 

  20. W.C. Lai, Y.S. Huang, Y.W. Yen, J.K. Sheu, T.H. Hsueh, C.H. Kuo, S.J. Chang, Phys. Status Solidi (c) 5 (2008) 1639–1641

    Article  ADS  Google Scholar 

  21. M. Albrecht, J.L. Weyher, B. Lucznik, I. Grzegory, S. Porowski, Appl. Phys. Lett. 92, 231909 (2008)

    Article  ADS  Google Scholar 

  22. A.M. Emar, E.A. Berkman, J. Zavada, N.A. El-Masry, S.M. Bedair, Physica Status Solidi (c), 8 (2011) 2034–2037

    Article  ADS  Google Scholar 

  23. M.E. Aumer, S.F. Leboeuf, B.F. Moody, S.M. Bedair, Appl. Phys. Lett. 79, 3803–3805 (2001)

    Article  ADS  Google Scholar 

  24. L. Zhu, B. Liu, Solid State Electron. 53, 336–340 (2009)

    Article  ADS  Google Scholar 

  25. A. Ougazzaden, G. Orsal, J. Streque, J.P. Salvestrini, N. Fressengeas, R. Djerboub, S. Sundaram, T. Moudakir, Y.E. Gmili, Opt. Mater. Express 4, 1030–1041 (2014)

    Article  ADS  Google Scholar 

  26. K. Nomeika, R. Aleksiejūnas, S. Miasojedovas, R. Tomašiūnas, K. Jarašiūnas, I. Pietzonka, M. Strassburg, H.J. Lugauer, J. Lumin. 188, 301–306 (2017)

    Article  Google Scholar 

  27. H. Schömig, S. Halm, A. Forchel, G. Bacher, J. Off, F. Scholz, Phys. Rev. Lett. 92, 106802–106802 (2004)

    Article  ADS  Google Scholar 

  28. Y.H. Cho, G.H. Gainer, A.J. Fischer, J.J. Song, S. Keller, U.K. Mishra, S.P. Denbaars, Appl. Phys. Lett. 73, 1370–1372 (1998)

    Article  ADS  Google Scholar 

  29. H. Jeong, H.J. Jeong, H.M. Oh, C.H. Hong, E.K. Suh, G. Lerondel, M.S. Jeong, Sci. Rep. 5, 9373 (2015)

    Article  Google Scholar 

  30. X. Wang, J. Yang, D. Zhao, D. Jiang, Z. Liu, W. Liu, F. Liang, S. Liu, Y. Xing, W. Wang, Superlattices Microstruct. 114, 32–36 (2018)

    Article  ADS  Google Scholar 

  31. Y.P. Varshni, Physica 34, 149–154 (1967)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledged the support from Sino-Semiconductor Technologies Co., Ltd. for providing necessary equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyong Wang.

Additional information

The corresponding author of this article is Prof. Zhiyong Wang, E-Mail: zywang_bjut@126.com.

First author of this article is Dr. Tian Lan, E-Mail: lantian8905@126.com.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, T., Yao, S., Zhou, G. et al. Effect of strain modification on crystallinity and luminescence of InGaN/GaN multiple quantum wells grown by MOCVD. Appl. Phys. A 124, 619 (2018). https://doi.org/10.1007/s00339-018-1958-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1958-x

Navigation