Skip to main content
Log in

Synthesis and electrochemical performance of Co3O4 via a coordination method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Co3O4 particles were prepared via a coordination-compound method (CCM) with [Co(3,5-pdc)(2,2-bpy)(H2O)2] 2H2O (H2pdc = 3,5-pyridinedicarboxylic acid, bpy = 2,2′-bipyridine) as a complex precursor. The one-dimensional cobalt(II) coordination precursor was synthesized via hydrothermal reactions with cobaltous nitrate and corresponding ligands. Single crystal X-ray diffraction analysis reveals that the crystal belongs to the triclinic system with space group P-1. For comparison, the Co3O4 sample was also prepared via a coprecipitation method (CPM). The Co3O4 samples were characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM). The morphology of Co3O4-CCM is a regular tetrakaidecahedron, which is completely different from that of Co3O4–CPM. Electrochemical properties of Co3O4 were investigated using cyclic voltammetry and galvanostatic charge–discharge measurements. The specific capacitance of Co3O4–CCM is 243.8 F/g, which is 1.77 times greater than that of Co3O4–CPM. (CCDC: 633050.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. X.X. Wang, J.H. Yu, H.Z. Dong, Appl. Phys. A Mater. 119, 1483–1490 (2015)

    Article  ADS  Google Scholar 

  2. S.K. Meher, G.R. Rao, J. Phys. Chem. C 115, 15646–15654 (2011)

    Article  Google Scholar 

  3. G. Srikesh, A. Samson, Nesaraj, Ceram. Int. 42, 5001–5010 (2016)

    Article  Google Scholar 

  4. Z.B. Zou, X.B. Xiong, J. Ma, X.R. Zeng, T. Huang, J.J. Li, B. Li, Rare Met. 35, 930–936 (2016)

    Article  Google Scholar 

  5. P. Guo, Y. Shen, Y. Song, J. Ma, Y.H. Lin, C.W. Lin, Rare Met. 9 691–697(2017)

    Article  Google Scholar 

  6. M. Gopalakrishnan, G. Srikesh, A. Mohan et al., Appl. Surf. Sci. 403, 578–583 (2017)

    Article  ADS  Google Scholar 

  7. X.X. Qing, S.Q. Liu, K.L. Huang et al., Electrochim. Acta 56, 4985–4991 (2011)

    Article  Google Scholar 

  8. H. Adhikari, M. Ghimire, C.K. Ranaweera et al., J. Alloys Compd. 708, 628–638 (2017)

    Article  Google Scholar 

  9. Y. Liu, X.G. Zhang, Y. Wu, Rare Met. 30, 90–93 (2011)

    Article  Google Scholar 

  10. F. Svegl, B. Orel, I. Grabecsvegl, V. Kaucic et al., Electrochim. Acta 45, 4359–4371 (2000)

    Article  Google Scholar 

  11. Y. Makimura, A. Rougier, J.M. Tarascon et al., Appl. Surf. Sci. 252, 4593 (2006)

    Article  ADS  Google Scholar 

  12. N. Bahlawane, E.F. Rivera, K. Kohse-Hoinghaus, A. Brechling et al., Appl. Catal., B 53, 245 (2004)

    Article  Google Scholar 

  13. R. Guo, J.H. You, F. Han, C.B. Liu, G.Y. Zheng, W.C. Xiao, X.W. Liu, Appl. Sur. Sci. 396, 1076–1084 (2017)

    Article  ADS  Google Scholar 

  14. X.W. Liu, J.H. You, R.C. Wang, Z.Y. Ni, F. Han, L. Jin, Z.Q. Ye, Z. Fang, R. Guo, Sci. Rep. 7, 13085 (2017)

    Article  ADS  Google Scholar 

  15. D. Barreca, D. Bekermann, E. Comini, A. Devi, R.A. Fischer, A. Gasparotto, M. Gavagnin, C. Maccato, C. Sada, G. Sberveglieri, E. Tondello, Sensor. Actuat. B-Chem. 160, 79–86 (2011)

    Article  Google Scholar 

  16. Z.J. Li, Z.J. Lin, N.N. Wang, J.Q. Wang, W. Liu, K. Sun, Y.Q. Fu, Z.G. Wang, Sensor. Actuat. B Chem. 235, 222–231 (2016)

    Article  Google Scholar 

  17. Q.Y. Liao, N. Li, S.X. Jin, G.W. Yang, C.X. Wang, ACS Nano 9, 5310–5317 (2015)

    Article  Google Scholar 

  18. D. Barreca, E. Comini, A. Gasparotto, C. Maccato, A. Pozza, C. Sada, G. Sberveglieri, E. Tondello, J. Nanosci. Nanotech. 10, 8054–8061 (2010)

    Article  Google Scholar 

  19. Y. Zhang, W. Zeng, Mater. Lett. 195, 217–219 (2017)

    Article  Google Scholar 

  20. Q. Zhou, W. Zeng, Phys. E 95, 121–124 (2018)

    Article  Google Scholar 

  21. X.W. Liu, R. Guo, H. Liu, Y.Q. Yu, X.W. Qi, J.Y. Xu, C.Z. Xie, RSC Adv. 5, 15059–15068 (2015)

    Article  Google Scholar 

  22. G.M. Sheldrick, (Gottingen University, Germany, 1997)

  23. M. Gopalakrishnan, G. Srikesh, A. Mohan, V. Arivazhagan, Appl. Surf. Sci. 403, 578–583 (2017)

    Article  ADS  Google Scholar 

  24. S.K. Ghosh, J. Ribas, P.K. Bharadwaj, Cryst. Growth Des. 5, 623–629 (2005)

    Article  Google Scholar 

  25. C.Z. Xie, B.F. Zhang, X.W. Liu, X.Q. Wang, H.Z. Kou, G.Q. Shen, D.Z. Shen, Inorg. Chem. Comm. 7, 1037–1040 (2004)

    Article  Google Scholar 

  26. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G. Muilenberg, Handbook of X-ray photoelectron spectroscopy, Perkin-Elmer, MN (1979)

  27. C.D. Wagner, Practical Surface Analysis, Vol 1: Auger and X-ray Photoelectron Spectroscopy (Wiley, Chichester, 1990)

    Google Scholar 

  28. S.A. Pawar, D.S. Patil, J.C. Shin, J. Ind. Eng. Chem. 54, 162–173 (2017)

    Article  Google Scholar 

  29. D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, A. Pozza, E. Tondello, Chem. Vap. Deposition 16, 296–300 (2010)

    Article  Google Scholar 

  30. D. Barreca, M. Cruz-Yusta, A. Gasparotto, C. Maccato, J. Morales, A. Pozza, C. Sada, L. Sanchez, E. Tondello, J. Phys. Chem. C 114, 10054–10060 (2010)

    Article  Google Scholar 

  31. X.W. Liu, R.C. Wang, Z.Y. Ni, W.L. Zhou, Y.C. Du, Z.Q. Ye, R. Guo, J. Alloys Compd. 743, 17–25 (2018)

    Article  Google Scholar 

  32. L. Ma, C.Y. Seo, X.Y. Chen, K. Sun, J.W. Schwank, Appl. Catal. B 222, 44–58 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation (Grant No. 51704064), the Fundamental Research Funds for the Central Universities (Grant No. N162302001), Hebei Province higher education science and technology research project (Grant No. ZD2017309), the Scientific and Technological Research and Development Plan of Qinhuangdao City (201701B063), the further support fund of Key Laboratory of Nanomaterials and Photoelectrocatalysis in Qinhuangdao City (201705B021), and Northeastern University at Qinhuangdao Campus Research Fund (XNK201602).

Author information

Authors and Affiliations

Authors

Contributions

XWL, RCW carried out the laboratory experiment and drafted the manuscript. The other authors provided assistance with the experimental measurements and data analysis. All authors read and approved the final manuscript.

Conflict of interest

The authors declare that they have no conflict of interest.

Corresponding author

Correspondence to Rui Guo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 616 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, R., Wang, R., Ni, Z. et al. Synthesis and electrochemical performance of Co3O4 via a coordination method. Appl. Phys. A 124, 623 (2018). https://doi.org/10.1007/s00339-018-1873-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1873-1

Navigation