Skip to main content
Log in

Biopolymer blend with semiconductivity for next generation in electronic devices

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Biopolymer blend materials of PLLA/PHB/TBC/MWCNT have been prepared by solvent casting and then melted to form films. The electrical conductivity, thermal properties, crystal structure, and morphology of new blends were studied. The AC conductivity is still constant in the case of low frequency or high frequency, and is increased with rising temperature like semiconductor materials and the conductivity of the blends can be increased from 10−17 S cm−1 (pure PLLA) to 10−1 S cm−1 (blend 5). It is observable that the dielectric loss (ε″) is improved after adding MWCNT to PLLA matrix and its values reach 1013 which decrease as frequency increase to 104 in comparing the blend of PLLA/PHB/TBC as the reference without MWCNT. Thermal behavior and crystalline behavior were investigated by DSC. The lower Tg decreased from 60 °C for pure PLLA to 20 °C for the blend 5 due to an active interaction between all components. WAXD found the existing peak at 2 ϑ = 25° and 44° for MWCNT. The good interface structure between the MWCNT and PLLA was examined by TEM. It is found the dispersion of MWCNT in the PLLA matrix uniformly, no aggregation; therefore, the electrical conductivity increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Vaccarini, G. Désarmot, R. Almairac et al., Reinforcement of an epoxy resin by single walled nanotubes. AIP Conference Proceedings 544, 521 (2000)

  2. D. Gabriel, A. Karbach, D. Drechsler et al., Bound rubber morphology and loss tangent properties of carbon-black-filled rubber compounds. Colloid Polym. Sci. 294(3), 501–511 (2016)

    Article  Google Scholar 

  3. K.-T. Hsiao, J. Alms, S.G. Advani, Use of epoxy/multiwalled carbon nanotubes as adhesives to join graphite fibre reinforced polymer composites. Nanotechnology 14(7), 791–793 (2003)

    Article  ADS  Google Scholar 

  4. J. Hopewell, R. Dvorak, E. Kosior et al., Plastics recycling: challenges and opportunities. Phil. Trans. R. Soc. B 364, 2115–2126 (2009)

    Article  Google Scholar 

  5. P.J. Brigandi, M.J. Cogen, R.A. Pearson, Electrically conductive multiphase polymer blend carbon-based composites. Polym. Eng. Sci. 54(1), 1–15 (2014)

    Article  Google Scholar 

  6. C. Lu, X.N. Hu et al., Triple percolation behavior and positive temperature coefficient effect of conductive polymer composites with especial interface morphology. Polym. Bull. 68(7), 2071–2087 (2012)

    Article  Google Scholar 

  7. T. Ramanathan, A.A. Abdala, S. Stankovich et al., Functionalized graphene sheets for polymer nanocomposites. Nat. Nanotechnol. 3(6), 327–3231 (2008)

    Article  ADS  Google Scholar 

  8. M.E. Achour, C. Brosseau, F. Carmona, Dielectric relaxation in carbon black-epoxy composite materials. J. Appl. Phys. 103, 094103 (2008)

    Article  ADS  Google Scholar 

  9. S. Zhou, Y. Chen, H. Zou et al., Thermally conductive composites obtained by flake graphite filling immiscible Polyamide 6/Polycarbonate blends. Thermochim. Acta 566, 84–91 (2013)

    Article  Google Scholar 

  10. G. Chen, W. Weng, D. Wu et al., PMMA/graphite nanosheets composite and its conducting properties. Eur. Polymer J. 39(12), 2329–2335 (2003)

    Article  Google Scholar 

  11. H. Kim, A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites. Macromolecules 43(11), 6515–6530 (2010)

    Article  ADS  Google Scholar 

  12. S. Stankovich, D.A. Dikin, R.D. Piner et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

    Article  Google Scholar 

  13. H.B. Zhang, W.G. Zheng, Q. Yan et al., Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51(5), 1191–1196 (2010)

    Article  Google Scholar 

  14. G.H. Chen, J.G. Lu, D.J. Wu, The electrical properties of graphite nanosheet filled immiscible polymer blends. Mater Chem Phys 104(2–3), 240–243 (2007)

    Article  Google Scholar 

  15. Z.M. Dang, L. Wang, Y. Yin et al., Giant dielectric permittivities in functionalized carbon-nanotube/electroactive-polymer nanocomposites. Adv. Mater. 19(6), 852–857 (2007)

    Article  Google Scholar 

  16. ZM Dang, JP Wu, HP Xu, et al., Dielectric properties of upright carbon fiber filled poly(vinylidene fluoride) composite with low percolation threshold and weak temperature dependence. Appl. Phys. Lett. 91, 212901 2007.

    Article  ADS  Google Scholar 

  17. J. Li, P.C. Ma, W.S. Chow et al., Correlations between percolation threshold, dispersion state, and aspect ratio of carbon nanotubes. Adv. Funct. Mater. 17(16), 3207–3215 (2007)

    Article  Google Scholar 

  18. P. Poetschke, S. Pegel, M.Claes, et al., A novel strategy to incorporate carbon nanotubes into thermoplastic matrices. Macromol. Rapid. Commun. 29(3), 244–251 (2008)

  19. M.V. Fabretto, D.R. Evans, M. Mueller et al., Polymeric material with metal-like conductivity for next generation organic electronic devices. Chem. Mater. 24(20), 3998–4003 (2012)

    Article  Google Scholar 

  20. F.C. Lavarda, M.C. dos Santos, D.S. Galvão et al., Insulator-to-metal transition in polythiophene. Phys. Rev. B, 49(2), 979–983 (1994)

    Article  ADS  Google Scholar 

  21. A.J. Heeger, Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel Lecture). Angew. Chem. Int. Edit. 40(14), 2591–2611 (2001)

    Article  Google Scholar 

  22. M. Sumita, K. Sakata, S. Asai et al., Dispersion of fillers and the electrical conductivity of polymer blends filled with carbon black. Polym. Bull. 25(2), 265–271 (1991)

    Article  Google Scholar 

  23. H. Kong, C. Gao, D.J. Yan, Controlled functionalization of multiwalled carbon nanotubes by in situ. Atom transfer radical polymerization. Am. Chem. Soc. 126(2), 412–414 (2004)

    Article  Google Scholar 

  24. C. Park, Z. Ounaies, K.A. Watson et al., Dispersion of single wall carbon nanotubes by in situ polymerization under sonication. Chem. Phys. Lett. 364(3–4), 303–309 (2002)

    Article  ADS  Google Scholar 

  25. N. Grossiord, J. Loos, O. Regev et al., Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem. Mater. 18, 1089–1099 (2006)

    Article  Google Scholar 

  26. M. Lai, J. Li, J. Yang et al., The morphology and thermal properties of multi-walled carbon nanotube and poly(hydroxybutyrate-co-hydroxyvalerate) composite. Polym. Int. 53(10), 1479–1484 (2004)

    Article  Google Scholar 

  27. C. Yang, Y. Lin, C.W., et al., Modified carbon nanotube composites with high dielectric constant low dielectric loss and large energy density. Carbon 47(4), 1096–1104 (2009)

  28. F. Kremer, A. Schoenhals. Broadband dielectric spectroscopy. https://doi.org/10.1007/978-3-642-56120-7, ISBN 978-3-642-56120-7 (Springer, Berlin, 2003)

    Book  Google Scholar 

  29. A. El-hadi, Increase the elongation at break of poly (lactic acid) composites for use in food packaging films. Sci. Rep. 7, 46767 (2017)

    Article  ADS  Google Scholar 

  30. A. El-hadi, Development of novel biopolymer blends based on poly(l-lactic acid), poly((R)-3-hydroxybutyrate), and plasticizer. Poly. Eng. and Sci. 54(6), 1394–1402 (2014)

    Article  Google Scholar 

  31. S.K. Misra, F. Ohashi, S.P. Valappil et al., Characterization of carbon nanotube (MWCNT) containing P (3HB)/bioactive glass composites for tissue engineering applications. Acta Biomater 6, 735–742 (2010)

    Article  Google Scholar 

  32. S.G. Bachhav, D.R. Patil, Synthesis and characterization of polyaniline-multiwalled carbon nanotube nanocomposites and its electrical percolation behavior. Am J Mater Sci 5, 90–95 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed M. El-hadi.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-hadi, A.M. Biopolymer blend with semiconductivity for next generation in electronic devices. Appl. Phys. A 124, 445 (2018). https://doi.org/10.1007/s00339-018-1846-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1846-4

Navigation