Skip to main content
Log in

Influence of annealing on the optoelectronic properties of the GLAD synthesized SiO x –ZnO heterostructure nanoclusters

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

We utilized Glancing angle deposition (GLAD) technique to synthesize SiO x –ZnO heterostructure nanoclusters. The as deposited heterostructure nanoclusters were annealed at 550 °C for 1 h in an open air using heating and cooling ramp of 5°C min−1. The FEG-SEM image represents the uneven growth of SiO x –ZnO heterostructure nanoclusters. Due to the agglomeration of smaller nanocluster, SiO x –ZnO heterostructure nanoclusters become more prominent after annealing. EDX indicates the presence of O, Si and Zn. The increase in the concentration of oxygen in annealed SiO x –ZnO heterostructure nanoclusters is attributed to the absorption of O2 molecules during an open air annealing. The formation of heterostructure is shown by the TEM image. The nanoclusters consist of SiO x and ZnO indicating the length of ~ 126 and ~ 97 nm, respectively. The SAED pattern depicts the crystalline nature of ZnO nanoclusters. The XRD pattern revealed that ZnO nanoclusters had wurtzite structure with (100), (002) and (101) orientations. The PL emission at 420 nm is ascribed to the radiative recombination of photoexcited electrons in the conduction band (CB) of ZnO and acceptor such as traps present in SiO x . The band gap significantly increases to 3.45 eV after annealing and it corresponds to main band gap of ZnO. The FTIR result shows the bonding of SiO x –ZnO heterostructure nanoclusters. In addition to the above measurement, we determined the IV characteristics of the as deposited and annealed SiO x –ZnO heterostructure nanoclusters. The as deposited sample shows schottky behavior which is applicable for nanoscale optoelectronic devices whereas the ohmic nature obtained after open air annealing is suitable for the application of solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y.J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, A. Nathan, ACS Photon. 3, 215 (2016)

    Article  Google Scholar 

  2. J. Huang, S. Chu, J. Kong, L. Zhang, C.M. Schwarz, G. Wang, L. Chernyak, Z. Chen, J. Liu, 1, 179 (2013)

  3. V. Galstyan, E. Comini, I. Kholmanov, A. Ponzoni, V. Sberveglieri, N. Poli, G. Faglia, G. Sberveglieri, Procedia Eng. 168, 1172 (2016)

    Article  Google Scholar 

  4. R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Nano Micro Lett. 7, 97 (2015)

    Article  Google Scholar 

  5. C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, Nano Lett. 7, 1003 (2007)

    Article  ADS  Google Scholar 

  6. S.N. Sarangi, V. Siva, B.K. Padhi, P.K. Sahoo, Adv. Mat. Lett. 8, 524 (2017)

    Article  Google Scholar 

  7. Y. Zhang, W. Chen, S. Wang, Y. Liu, C. Pope, J. Biomed. Nanotechnol. 4, 432 (2008)

    Article  Google Scholar 

  8. Y. Liu, Y. Zhang, S. Wang, C. Pope, W. Chen, Appl. Phys. Lett. 92, 143901 (2008)

    Article  ADS  Google Scholar 

  9. Y. Wei, W. Wu, R. Guo, D. Yuan, S. Das, Z.L. Wang, Nano Lett. 10, 3414 (2010)

    Article  ADS  Google Scholar 

  10. C. Ye, X. Fang, Y. Hao, X. Teng, L. Zhang, J. Phys. Chem. B. 109, 19758 (2005)

    Article  Google Scholar 

  11. H. Zhou, J. Fallert, J. Sartor, R.J. Dietz, C. Klingshirn, H. Kalt, D. Weissenberger, D. Gerthsen, H. Zeng, W. Cai, Appl. Phys. Lett. 92, 132112 (2008)

    Article  ADS  Google Scholar 

  12. M.S. Gudiksen, J. Wang, C.M. Liebe, J. Phys. Chem. B. 105, 4062 (2001)

    Article  Google Scholar 

  13. A. Bera and D. Basak, Appl. Mater. Interface. 1, 2066 (2009)

    Article  Google Scholar 

  14. S.K. Chong, C.F. Dee, S.A. Rahman, Nanoscale Res. Lett. 8, 174 (2013)

    Article  ADS  Google Scholar 

  15. M. Law, L.E. Green, J.C. Jhonson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)

    Article  ADS  Google Scholar 

  16. N.K. A.Mondal, P. Singh, J.C. Chinnamuthu, A. Dhar, S. Bhattacharyya, Choudhury, IEEE Photon. Technol. Lett. 24, 2020 (2012)

    Article  ADS  Google Scholar 

  17. T.X. Nie, Z.G. Chen, Y.Q. Wu, J.L. Wang, J.Z. Zhang, Y.L. Fan, X.J. Yang, Z.M. Jiang, J. Zou, J. Phys. Chem. C. 114, 15370 (2010)

    Article  Google Scholar 

  18. L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, Nature. 426, 816 (2003)

    Article  ADS  Google Scholar 

  19. J.C. Dhar, A. Mondal, N.K. Singh, S. Chakrabartty, A. Bhattacharyya, K.K. Chattopadhyay, J. Appl. Phys. 114, 244310 (2013)

    Article  ADS  Google Scholar 

  20. N.K. Singh, A. Mondal, J. Nanosci. Nanotechnol. 15, 6098 (2015)

    Article  Google Scholar 

  21. S.K. Chong, B.T. Goh, Z. Aspanut, M.R. Muhamad, C.F. Dee, S.A. Rahman, Mater. Lett. 65, 2452 (2011)

    Article  Google Scholar 

  22. B.D. Cullity, Elements of X-Ray Diffraction, vol. 102. Addison Wesley, Boston (1978)

  23. J.J. Ding, H.X. Chen, S.Y. Ma, Appl. Surf. Sci. 256, 4304 (2010)

    Article  ADS  Google Scholar 

  24. C.M. Zhou, D. Gall, Appl. Phys. Lett. 90, 093103 (2007)

    Article  ADS  Google Scholar 

  25. A. Mondal, B. Shougaijam, T. Goswami, J.C. Dhar, N.K. Singh, S. Choudhury, K.K. Chattopadhay, Appl. Phys. A. 115, 353 (2014)

    Article  ADS  Google Scholar 

  26. J.C. Dhar, A. Mondal, N.K. Singh, K.K. Chattopadhyay, J. Appl. Phys. 113, 174304 (2013)

    Article  ADS  Google Scholar 

  27. D.C. Agarwala, R.S. Chauhan, A. Kumar, D. Kabiraj, F. Singh, S.A. Khan, D.K. Avasthi, J.C. Pivin, M. Kumar, J. Ghatak, P.V. Satyam, J. Appl. Phys. 99, 123105 (2006)

    Article  ADS  Google Scholar 

  28. S. Kuriakose, K. Sahu, S.A. Khan, A. Tripathi, D.K. Avasthi, Opt. Mat. 64, 47 (2016)

    Article  Google Scholar 

  29. J. Tauc, R. Grigorovichi, A. Vancu, Phys. Status Solid. 15, 627 (1966)

    Article  ADS  Google Scholar 

  30. P.A. Rodnyi, I.V. Khodyak, Opt. Spectrosc. 111, 776 (2011)

    Article  ADS  Google Scholar 

  31. J.W. Jeon, D.W. Jeon, T. Sahoo, M. Kim, J.H. Baek, J.L. Hoffman, N.S. Kim, I.H. Lee, J. Alloys Compd. 509, 10062 (2011)

    Article  Google Scholar 

  32. H.J. Queisser, J. Appl. Phys. 37, 2909 (1966)

    Article  ADS  Google Scholar 

  33. S. Saha, V. Gupta, J. Appl. Phys. 110, 064904 (2011)

    Article  ADS  Google Scholar 

  34. H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010)

    Article  Google Scholar 

  35. M.Andres Verges, A. Misfied, C.J. Serna, J. Chem Soc. Faraday Trans. 86, 959 (1990)

    Article  Google Scholar 

  36. S. Hayashi, N. Nakomori, H. Kanamori, Y. Yogodawa, Surf. Sci. 86, 665 (1979)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to express their thanks to Dr. Ardhendu Saha, NIT Agartala, Department of Electrical Engineering, Tripura, India, for availing the optical absorption measurement facility, SAIF, Indian Institute of Technology, Bombay for providing FEG-SEM facility, SAIF NEHU for performing TEM characterization, NIT Manipur for providing photoluminescence measurement and XRD characterization facilities and NIT Nagaland for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naorem Khelchand Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajkumari, R., Singh, N.K. Influence of annealing on the optoelectronic properties of the GLAD synthesized SiO x –ZnO heterostructure nanoclusters. Appl. Phys. A 124, 264 (2018). https://doi.org/10.1007/s00339-018-1687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1687-1

Navigation