Advertisement

Applied Physics A

, 124:264 | Cite as

Influence of annealing on the optoelectronic properties of the GLAD synthesized SiO x –ZnO heterostructure nanoclusters

  • Rajshree Rajkumari
  • Naorem Khelchand Singh
Article
  • 84 Downloads

Abstract

We utilized Glancing angle deposition (GLAD) technique to synthesize SiO x –ZnO heterostructure nanoclusters. The as deposited heterostructure nanoclusters were annealed at 550 °C for 1 h in an open air using heating and cooling ramp of 5°C min−1. The FEG-SEM image represents the uneven growth of SiO x –ZnO heterostructure nanoclusters. Due to the agglomeration of smaller nanocluster, SiO x –ZnO heterostructure nanoclusters become more prominent after annealing. EDX indicates the presence of O, Si and Zn. The increase in the concentration of oxygen in annealed SiO x –ZnO heterostructure nanoclusters is attributed to the absorption of O2 molecules during an open air annealing. The formation of heterostructure is shown by the TEM image. The nanoclusters consist of SiO x and ZnO indicating the length of ~ 126 and ~ 97 nm, respectively. The SAED pattern depicts the crystalline nature of ZnO nanoclusters. The XRD pattern revealed that ZnO nanoclusters had wurtzite structure with (100), (002) and (101) orientations. The PL emission at 420 nm is ascribed to the radiative recombination of photoexcited electrons in the conduction band (CB) of ZnO and acceptor such as traps present in SiO x . The band gap significantly increases to 3.45 eV after annealing and it corresponds to main band gap of ZnO. The FTIR result shows the bonding of SiO x –ZnO heterostructure nanoclusters. In addition to the above measurement, we determined the IV characteristics of the as deposited and annealed SiO x –ZnO heterostructure nanoclusters. The as deposited sample shows schottky behavior which is applicable for nanoscale optoelectronic devices whereas the ohmic nature obtained after open air annealing is suitable for the application of solar cells.

Notes

Acknowledgements

The authors would like to express their thanks to Dr. Ardhendu Saha, NIT Agartala, Department of Electrical Engineering, Tripura, India, for availing the optical absorption measurement facility, SAIF, Indian Institute of Technology, Bombay for providing FEG-SEM facility, SAIF NEHU for performing TEM characterization, NIT Manipur for providing photoluminescence measurement and XRD characterization facilities and NIT Nagaland for financial support.

References

  1. 1.
    Y.J. Pan, J. Chen, Q. Huang, Q. Khan, X. Liu, Z. Tao, Z. Zhang, W. Lei, A. Nathan, ACS Photon. 3, 215 (2016)CrossRefGoogle Scholar
  2. 2.
    J. Huang, S. Chu, J. Kong, L. Zhang, C.M. Schwarz, G. Wang, L. Chernyak, Z. Chen, J. Liu, 1, 179 (2013)Google Scholar
  3. 3.
    V. Galstyan, E. Comini, I. Kholmanov, A. Ponzoni, V. Sberveglieri, N. Poli, G. Faglia, G. Sberveglieri, Procedia Eng. 168, 1172 (2016)CrossRefGoogle Scholar
  4. 4.
    R. Kumar, O. Al-Dossary, G. Kumar, A. Umar, Nano Micro Lett. 7, 97 (2015)CrossRefGoogle Scholar
  5. 5.
    C. Soci, A. Zhang, B. Xiang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, Nano Lett. 7, 1003 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    S.N. Sarangi, V. Siva, B.K. Padhi, P.K. Sahoo, Adv. Mat. Lett. 8, 524 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Zhang, W. Chen, S. Wang, Y. Liu, C. Pope, J. Biomed. Nanotechnol. 4, 432 (2008)CrossRefGoogle Scholar
  8. 8.
    Y. Liu, Y. Zhang, S. Wang, C. Pope, W. Chen, Appl. Phys. Lett. 92, 143901 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Wei, W. Wu, R. Guo, D. Yuan, S. Das, Z.L. Wang, Nano Lett. 10, 3414 (2010)ADSCrossRefGoogle Scholar
  10. 10.
    C. Ye, X. Fang, Y. Hao, X. Teng, L. Zhang, J. Phys. Chem. B. 109, 19758 (2005)CrossRefGoogle Scholar
  11. 11.
    H. Zhou, J. Fallert, J. Sartor, R.J. Dietz, C. Klingshirn, H. Kalt, D. Weissenberger, D. Gerthsen, H. Zeng, W. Cai, Appl. Phys. Lett. 92, 132112 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    M.S. Gudiksen, J. Wang, C.M. Liebe, J. Phys. Chem. B. 105, 4062 (2001)CrossRefGoogle Scholar
  13. 13.
    A. Bera and D. Basak, Appl. Mater. Interface. 1, 2066 (2009)CrossRefGoogle Scholar
  14. 14.
    S.K. Chong, C.F. Dee, S.A. Rahman, Nanoscale Res. Lett. 8, 174 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    M. Law, L.E. Green, J.C. Jhonson, R. Saykally, P. Yang, Nat. Mater. 4, 455 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    N.K. A.Mondal, P. Singh, J.C. Chinnamuthu, A. Dhar, S. Bhattacharyya, Choudhury, IEEE Photon. Technol. Lett. 24, 2020 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    T.X. Nie, Z.G. Chen, Y.Q. Wu, J.L. Wang, J.Z. Zhang, Y.L. Fan, X.J. Yang, Z.M. Jiang, J. Zou, J. Phys. Chem. C. 114, 15370 (2010)CrossRefGoogle Scholar
  18. 18.
    L. Tong, R.R. Gattass, J.B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, E. Mazur, Nature. 426, 816 (2003)ADSCrossRefGoogle Scholar
  19. 19.
    J.C. Dhar, A. Mondal, N.K. Singh, S. Chakrabartty, A. Bhattacharyya, K.K. Chattopadhyay, J. Appl. Phys. 114, 244310 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    N.K. Singh, A. Mondal, J. Nanosci. Nanotechnol. 15, 6098 (2015)CrossRefGoogle Scholar
  21. 21.
    S.K. Chong, B.T. Goh, Z. Aspanut, M.R. Muhamad, C.F. Dee, S.A. Rahman, Mater. Lett. 65, 2452 (2011)CrossRefGoogle Scholar
  22. 22.
    B.D. Cullity, Elements of X-Ray Diffraction, vol. 102. Addison Wesley, Boston (1978)Google Scholar
  23. 23.
    J.J. Ding, H.X. Chen, S.Y. Ma, Appl. Surf. Sci. 256, 4304 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    C.M. Zhou, D. Gall, Appl. Phys. Lett. 90, 093103 (2007)ADSCrossRefGoogle Scholar
  25. 25.
    A. Mondal, B. Shougaijam, T. Goswami, J.C. Dhar, N.K. Singh, S. Choudhury, K.K. Chattopadhay, Appl. Phys. A. 115, 353 (2014)ADSCrossRefGoogle Scholar
  26. 26.
    J.C. Dhar, A. Mondal, N.K. Singh, K.K. Chattopadhyay, J. Appl. Phys. 113, 174304 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    D.C. Agarwala, R.S. Chauhan, A. Kumar, D. Kabiraj, F. Singh, S.A. Khan, D.K. Avasthi, J.C. Pivin, M. Kumar, J. Ghatak, P.V. Satyam, J. Appl. Phys. 99, 123105 (2006)ADSCrossRefGoogle Scholar
  28. 28.
    S. Kuriakose, K. Sahu, S.A. Khan, A. Tripathi, D.K. Avasthi, Opt. Mat. 64, 47 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Tauc, R. Grigorovichi, A. Vancu, Phys. Status Solid. 15, 627 (1966)ADSCrossRefGoogle Scholar
  30. 30.
    P.A. Rodnyi, I.V. Khodyak, Opt. Spectrosc. 111, 776 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    J.W. Jeon, D.W. Jeon, T. Sahoo, M. Kim, J.H. Baek, J.L. Hoffman, N.S. Kim, I.H. Lee, J. Alloys Compd. 509, 10062 (2011)CrossRefGoogle Scholar
  32. 32.
    H.J. Queisser, J. Appl. Phys. 37, 2909 (1966)ADSCrossRefGoogle Scholar
  33. 33.
    S. Saha, V. Gupta, J. Appl. Phys. 110, 064904 (2011)ADSCrossRefGoogle Scholar
  34. 34.
    H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010)CrossRefGoogle Scholar
  35. 35.
    M.Andres Verges, A. Misfied, C.J. Serna, J. Chem Soc. Faraday Trans. 86, 959 (1990)CrossRefGoogle Scholar
  36. 36.
    S. Hayashi, N. Nakomori, H. Kanamori, Y. Yogodawa, Surf. Sci. 86, 665 (1979)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringNational Institute of Technology NagalandDimapurIndia

Personalised recommendations