Applied Physics A

, 124:254 | Cite as

Impact of solidification dynamics on crystal properties of silicon molten by a nanosecond laser pulse

  • Fabian Meyer
  • Andreas Büchler
  • Andreas A. Brand
  • Manoj K. Dasa
  • Jan F. Nekarda
  • Ralf Preu
Part of the following topical collections:
  1. COLA2017


In this study, we use pump-probe microscopy to examine the melting and solidification dynamics of silicon during and after a UV laser pulse with a duration of \(30\,\hbox {ns}\). Below the ablation threshold, we observe lateral melt front contraction velocities of up to \(600\,\hbox {ms}^{-1}\). The peak velocities spatially coincide with a ring of lower crystallinity within the formerly molten area, as we show with spatially resolved Raman spectroscopy.



The authors would like to thank Laura Stevens for performing the AFM measurement and Andreas Fell for providing the simulation software. This work was funded by the German Federal Ministry for Economic Affairs and Energy within the research Projects nos. 0325775 and 0324034.


  1. 1.
    A.A. Brand, F. Meyer, J.F. Nekarda, R. Preu, Appl. Phys. A 117, 237–241 (2014)ADSCrossRefGoogle Scholar
  2. 2.
    N.H. Nickel, Laser crystallization of silicon (Academic Press, Cambridge, 2003)Google Scholar
  3. 3.
    U. Besi-Vetrella, E. Salza, L. Pirozzi, S. Noel, A. Slaoui, J.C. Muller, Mater. Sci. Semicond. Process. 1, 325–329 (1998)CrossRefGoogle Scholar
  4. 4.
    E. Schneiderlöchner, R. Preu, R. Lüdemann, S.W. Glunz, Prog. Photovolt. Res. Appl. 10, 29–34 (2002)CrossRefGoogle Scholar
  5. 5.
    J.M. Poate, J.W. Mayer, Laser Annealing of Semiconductors (Academic Press, New York, 1982), pp. 1–14CrossRefGoogle Scholar
  6. 6.
    M.O. Thompson, G.J. Galvin, J.W. Mayer, P.S. Peercy, J.M. Poate, D.C. Jacobson, A.G. Cullis, N.G. Chew, Phys. Rev. 52, 2360–2363 (1984)ADSGoogle Scholar
  7. 7.
    J.M. Cole, P. Humphreys, L.G. Earwaker, Vacuum 34, 871–874 (1984)ADSCrossRefGoogle Scholar
  8. 8.
    A. Polman, D.J.W. Mous, P.A. Stolk, W.C. Sinke, C.W.T. Bulle-Lieuwma, D.E.W. Vandenhoudt, Appl. Phys. Lett. 55, 1097–1099 (1989)ADSCrossRefGoogle Scholar
  9. 9.
    L. Haji, P. Joubert, J. Stoemenos, N.A. Economou, J. Appl. Phys. 75, 3944–3952 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    J.J.P. Bruines, R.P.M. van Hal, B.H. Koek, M.P.A. Viegers, H.M.J. Boots, Appl. Phys. Lett. 50, 507–509 (1987)ADSCrossRefGoogle Scholar
  11. 11.
    J.S. Im, H.J. Kim, Appl. Phys. Lett. 64, 2303–2305 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    D. von der Linde, K. Sokolowski-Tinten, Appl. Surf. Sci. 154, 1–10 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    A. Fell, D. Kray, G.P. Willeke, Appl. Phys. A 92, 987–991 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    A. Fell, F. Granek, Appl. Phys. A 110, 643–648 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    D.T. Pierce, W.E. Spicer, Phys. Rev. B 5, 3017–3029 (1972)ADSCrossRefGoogle Scholar
  16. 16.
    O. Renner, J. Zemek, Czech. J. Phys. 23, 1273–1276 (1973)ADSCrossRefGoogle Scholar
  17. 17.
    E.P. Donovan, F. Spaepen, D. Turnbull, J.M. Poate, D.C. Jacobson, Appl. Phys. Lett. 42, 698–700 (1983)ADSCrossRefGoogle Scholar
  18. 18.
    R. Chartrand, ISRN Appl. Math. 2011, 1–11 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    K. Suga, M. Chida, Y. Mishima, A. Hara, N. Sasaki, S.I.D. Int, Symp. Dig. Tech. 31, 534–537 (2000)CrossRefGoogle Scholar
  20. 20.
    A.T. Voutsas, A.M. Marmorstein, R. Solanki, J. Electrochem. Soc. 146, 3500–3505 (1999)CrossRefGoogle Scholar
  21. 21.
    J.H. Parker, D.W. Feldman, M. Ashkin, Phys. Rev. 155, 712–714 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Fraunhofer Institute for Solar Energy Systems (ISE)FreiburgGermany

Personalised recommendations