Skip to main content
Log in

Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this work, the effect of different types of thermal annealing on the properties of Cu2FeSnS4 (CFTS) thin films deposited by thermal evaporation at room temperature on glass substrate were investigated. CFTS powder was synthesized by direct melting of the constituent elements taken in stoichiometry compositions. The X-ray diffraction experimental data indicating that the Cu2FeSnS4 powder illustrating a stannite structure in space group I\(\bar {4}\)2m. From the XRD analysis we have found that the polycrystalline CFTS thin film was only obtained by thermal annealed in sulfur atmosphere under a high vacuum of 400 °C temperature during 2 h. Optical study reveals that the thin films have relatively high absorption coefficients (≈ 105cm−1) and the values of optical band gap energy ranged between 1.38 and 1.48 eV. Other optical parameters were evaluated according to the models of Wemple Di-Domenico and Spitzer-Fan. Finally, hot probe measurements of CFTS thin films reveal p-type conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Touati, M. Ben Rabeh, M. Kanzari, Energy Procedia 44, 44–51 (2014)

    Article  Google Scholar 

  2. R. Touati, M. Ben Rabeh, M. Kanzari, Thin solid films 582, 198–202 (2015)

    Article  ADS  Google Scholar 

  3. X. Zhang, N. Bao, K. Ramasamy, Y.-H.A. Wang, Y. Wang, B. Lin, A. Gupta, Chem. Commun. 48, 4956–4958 (2012)

    Article  Google Scholar 

  4. X. Meng, H. Deng, J. He, L. Sun, P. Yang, J. Chu, Mater. Lett. 151, 61–63 (2015)

    Article  Google Scholar 

  5. S. Rondiya, N. Wadnerkar, Y. Jadhav, S. Jadkar, S. Haram, M. Kabir, Chem. Mater. 29(7), 3133–3142 (2017)

    Article  Google Scholar 

  6. F. Ozela, E. Aslanb, B. Istanbulluc, O. Akayc, I.H. Patirb, Appl. Catal. B 198, 67–73 (2016)

    Article  Google Scholar 

  7. C. Yan, C. Huang, J. Yang, F. Liu, J. Liu, Y. Lai, J. Li, Y. Liu, Chem.Commun. 48, 2603–2605 (2012)

    Article  Google Scholar 

  8. G. Chen, J. Li, S. Chen, Z. Huang, M. Wu, J. Zhao, W. Wang, H. Lin, C. Zhu, Mater. Chem. Phys. 188, 95–99 (2017)

    Article  Google Scholar 

  9. L. Li, X. Liu, J. Huang, M. Cao, S. Chen, Y. Shen, L. Wang, Mater. Chem. Phys. 133, 688–691 (2012)

    Article  Google Scholar 

  10. J.Y. Chane-Ching, A. Gillorin, O. Zaberca, A. Balocchi, X. Marie, Chem. Commun. 47, 5229–5231 (2011)

    Article  Google Scholar 

  11. F. Liu, Y. Li, K. Zhang, B. Wang, C. Yan, Y. Lai, Z. Zhang, J. Li, Y. Liu, Sol. Energ. Mater. Sol. Cells 94, 2431–2434 (2010)

    Article  Google Scholar 

  12. C. Domain, S. Laribi, S. Taunier, J.F. Guillemoles, J. Phys. Chem. Solids 64, 1657–1663 (2003)

    Article  ADS  Google Scholar 

  13. X. Song, X. Ji, M. Li, W. Lin, X. Luo, H. Zhang, Inter. J. Photoenergy 2014, 1–11 (2014)

  14. M. Cao, C. Li, B. Zhang, J. Huang, L. Wang, Y. Shen, J. Alloys Compd. 622, 695–702 (2015)

    Article  Google Scholar 

  15. H. Guan, H. Shen, B. Jiao, X. Wang, Mater. Sci. Semicond. Process 25, 159–162 (2014)

    Article  Google Scholar 

  16. K. Mokurala, P. Bhargava, S. Mallick, Mater. Chem. Phys. 147, 371–374 (2014)

    Article  Google Scholar 

  17. D.B. Khadka, J.H. Kim, J. Alloys Compd. 638, 103–108 (2015)

    Article  Google Scholar 

  18. H. X.Meng, L. Deng, P. Sun, Yang, J. Chu, Mater. Lett. 161, 427–430 (2015)

    Article  Google Scholar 

  19. J. Zhou, Z. Ye, Y. Wang, Q. Yi, J. Wen, Mater. Lett. 140, 119–122 (2015)

    Article  Google Scholar 

  20. W. Wang, H. Shen, H. Yao, J. Li, Mater. Lett. 125, 183–186 (2014)

    Article  Google Scholar 

  21. X. Meng, H. Deng, J. Tao, H. Cao, X. Li, L. Sun, P. Yang, J. Chu, J. Alloys Compd. 680, 446–451 (2016)

    Article  Google Scholar 

  22. R.R. Prabhakar, N.H. Loc, M.H. Kumar, P.P. Boix, S. Juan, R.A. John, S.K. Batabyal, L.H. Wong, ACS Appl. Mater. Interfaces 6, 17661–17667 (2014)

    Article  Google Scholar 

  23. X. Meng, H. Deng, Q. Zhang, L. Sun, P. Yang, J. Chu, Mater. Lett. 186, 138–141 (2017)

    Article  Google Scholar 

  24. Y. Liu, M. Hao, J. Yang, L. Jiang, C. Yan, C. Huang, D. Tang, F. Liu, Y. Liu, Mater. Lett. 136, 306–309 (2014)

    Article  Google Scholar 

  25. X. Jiang, W. Xu, R. Tan, W. Song, J. Chen, Mater. Lett. 39, 102–103 (2013)

    Google Scholar 

  26. F. Ozel, M. Kus, A. Yar, E. Arkan, M. Can, A. Aljabour, N. Mehmet Varal, M. Ersoz, J. Mater. Sci. 50, 777–783 (2015)

    Article  ADS  Google Scholar 

  27. J.B. Nelson, D.P. Riley, Proc. Phys. Soc. 57, 160–177 (1945)

    Article  ADS  Google Scholar 

  28. J.J. Scragg, T. Ericson, T. Kubart, M. Edoff, C. Platzer-Björkman, Chem. Mater. 23, 4625–4633 (2011)

    Article  Google Scholar 

  29. J.E. Hall, W.F.C. Ferguson, J. Opt. Soc. Am. 45(9), 714–718 (1955)

    Article  ADS  Google Scholar 

  30. B.D. Cullity, Elements of X-ray Diffraction, 2nd edn. (Addition-Weasley, London, 1978)

    Google Scholar 

  31. G.B. Williamson, R.C. Smallman, Phil. Mag. 1(1), 34–46 (1956)

    Article  ADS  Google Scholar 

  32. S. Thanikaikarasan, K. Sundaram, T. Mahalingam, S. Velumani, J.K. Rhee, Mater. Sci. Eng 174, 242–248 (2010)

    Article  Google Scholar 

  33. S. Thanikaikarasan, T. Mahalingam, M. Raja, T. Kim, Y.D. Kim, J. Mater. Sci. Mater. Electron 20, 727–734 (2009)

    Article  Google Scholar 

  34. T.S. Moss, G.J. Burrell, B. Ellis, Semiconductor Opto-Electronics (Wiley, New York, 1973)

    Google Scholar 

  35. T.S. Moss, Optical Properties of Semiconductors, Butterworths (Scientific Publications Ltd., London, 1961)

    Google Scholar 

  36. M. Caglar, S. Ilican, Y. Caglar, F. Yakuphanoglu, J. Mater. Sci. Mater. Electron 19, 704–708 (2008)

    Article  Google Scholar 

  37. A.M. Salem, M.E. El-Ghazzawi, Semicond. Sci. Technol. 19, 236–241 (2003)

    Article  ADS  Google Scholar 

  38. H. Komaki, K. Yoshino, Y. Akaki, M. Yoneta, T. Ikari, Phys. Status Solidi 0, 759–762 (2003)

    Article  Google Scholar 

  39. S.H. Wemple, M. Didomenico, Phys. Rev. B 3, 1338–1351 (1971)

    Article  ADS  Google Scholar 

  40. W.G. Spitzer, H.Y. Fan, Phys. Rev. 106, 882 (1957)

    Article  ADS  Google Scholar 

  41. B.Van Zeghbroeck, Principles of Electronic Devices: Principle of Semiconductor Devices (1997)

  42. G. Golan, A. Axelevitch, B. Gorenstein, V. Manevych, J. Microelectron. 37, 910–915 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Oueslati.

Ethics declarations

Conflict of interest

We declare (all authors) that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oueslati, H., Rabeh, M.B. & Kanzari, M. Effect of thermal annealing on the structural and optical properties of Cu2FeSnS4 thin films grown by vacuum evaporation method. Appl. Phys. A 124, 201 (2018). https://doi.org/10.1007/s00339-018-1566-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-018-1566-9

Navigation