Skip to main content
Log in

Characterization of spatial manipulation on ZnO nanocomposites consisting of Au nanoparticles, a graphene layer, and ZnO nanorods

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Three types of ZnO-based nanocomposites were fabricated consisting of 80-nm Au nanoparticles (NPs), a graphene layer, and ZnO nanorods (NRs). To investigate interactions between the ZnO NRs and Au nanoparticle, multiple material analysis techniques including field-emission scanning electron microscopy (FESEM), surface contact angle measurements, secondary ion mass spectrometry (SIMS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopic characterizations were performed. Results indicate that incorporating a graphene layer could block the interaction between the ZnO NRs and the Au NPs. Furthermore, the Raman signal of the Au NPs could be enhanced by inserting a graphene layer on top of the ZnO NRs. Investigation of these graphene-incorporated nanocomposites would be helpful to future studies of the physical properties and Raman analysis of the ZnO-based nanostructure design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Z. Qin, Z.J. Li, G.Q. Yun, K. Shi, K. Li, B.C. Yang, ZnO nanorods inserted graphene sheets with improved supercapacitive performance. Appl. Surf. Sci. 292, 544–550 (2014)

    Article  ADS  Google Scholar 

  2. C. Gray, J. Cullen, C. Byrne, G. Hughes, I. Buyanova, W. Chen, M.O. Henry, E. McGlynn, Growth of isotopically enriched ZnO nanorods of excellent optical quality. J. Cryst. Growth 429, 6–12 (2015)

    Article  ADS  Google Scholar 

  3. T.O. Okyay, R.K. Bala, H.N. Nguyen, R. Atalay, Y. Bayam, D.F. Rodrigues, Antibacterial properties and mechanisms of toxicity of sonochemically grown ZnO nanorods. RSC Adv. 5, 2568–2575 (2015)

    Article  Google Scholar 

  4. H. Chen, Y.Y. He, M.H. Lin, S.R. Lin, T.W. Chang, C.F. Lin, C.-T.R. Yu, M.L. Sheu, C.B. Chen, Y.-S. Lin, Characterizations of zinc oxide nanorods incorporating a graphene layer as antibacterial nanocomposites on silicon substrates. Ceram. Int. 42, 3424–3428 (2016)

    Article  Google Scholar 

  5. H. Chen, C.B. Chen, Y.C. Chu, Comparison of nanographene and Au nanoparticles on electrohydrothermally grown ZnO nanorods. Ceram. Int. 40, 6191–6195 (2014)

    Article  Google Scholar 

  6. B. Butun, J. Cesario, S. Enoch, R. Quidant, E. Ozbay, InGaN green light emitting diodes with deposited nanoparticles. Photonics Nanostruct. Fundam. Appl. 5, 86–90 (2007)

    Article  ADS  Google Scholar 

  7. S.K. Hau, H.-L. Yip, K. Leong, A.K.Y. Jen, Spraycoating of silver nanoparticle electrodes for inverted polymer solar cells. Org. Electron. 10, 719–723 (2009)

    Article  Google Scholar 

  8. O.R. Miranda, X. Li, L. Garcia-Gonzalez, Z.-J. Zhu, B. Yan, U.H.F. Bunz, V.M. Rotello, Colorimetric bacteria sensing using a supramolecular enzyme–nanoparticle biosensor. J. Am. Chem. Soc. 133, 9650–9653 (2011)

    Article  Google Scholar 

  9. C.-Y. Lin, Y.-H. Lai, A. Balamurugan, R. Vittal, C.-W. Lin, K.-C. Ho, Electrode modified with a composite film of ZnO nanorods and Ag nanoparticles as a sensor for hydrogen peroxide. Talanta 82, 340–347 (2010)

    Article  Google Scholar 

  10. P. Ilana, A. Guy, P. Nina, G. Geoffrey, M. Serguei, G. Aharon, Sonochemical coating of silver nanoparticles on textile fabrics (nylon, polyester and cotton) and their antibacterial activity. Nanotechnology 19, 245705 (2008)

    Article  Google Scholar 

  11. K. Geim, K.S. Novoselov, The rise of graphene. Nat. Mater. 6, 183–191 (2007)

    Article  ADS  Google Scholar 

  12. H. Chen, C.P. Chen, C.-T.R. Yu, Y.T. Chen, C.-C. Teng, K.-Y. Lo, C.H. Lin, B.-Y. Huang, Distinct spatial profiles and antibacterial effects of 20-nm Ag nanoparticles dripped on ZnO nanorods grown on a polished Ti substrate. Appl. Surf. Sci. 311, 422–425 (2014)

    Article  ADS  Google Scholar 

  13. W. Irene Calizo, F. Bao, C.N. Miao, A. Lau, Alexander, Balandin, The effect of substrates on the Raman spectrum of graphene: graphene-on-sapphire and graphene-on-glass. Appl. Phys. Lett. 91, 201904 (2007)

    Article  ADS  Google Scholar 

  14. G. Goncalves, P.A.A.P. Marques, C.M. Granadeiro, H.I.S. Nogueira, M.K. Singh, J. Grácio, Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chem. Mater. 21, 4796–4802 (2009)

    Article  Google Scholar 

  15. P.V. Kamat, Graphene-based nanoarchitectures. anchoring semiconductor and metal nanoparticles on a two-dimensional carbon support. J. Phys. Chem. Lett. 1, 520–527 (2010)

    Article  Google Scholar 

  16. H. Chen, Y.-M. Yeh, J.-Z. Chen, S.-M. Liu, B.Y. Huang, Z.-H. Wu, S.-L. Tsai, H.-W. Chang, Y.-C. Chu, C.H. Liao, Fabrication and characterizations of ZnO nanorods/Au nanoparticle composites on the electropolished Ti substrate. Thin Solid Films 549, 74–78 (2013)

    Article  ADS  Google Scholar 

  17. H. Kitagawa, N. Kojima, T. Nakajima, Studies of mixed-valence states in three-dimensional halogen-bridged gold compounds, Cs2AuIAuIIIX6, (X = Cl, Br or I). Part 2. X-ray photoelectron spectroscopic study. J. Chem. Soc. Dalton Trans., 3121–3125 (1991)

  18. P. Kundu, N. Singhania, G. Madras, N. Ravishankar, ZnO-Au nanohybrids by rapid microwave-assisted synthesis for CO oxidation. Dalton Trans. 41, 8762–8766 (2012)

    Article  Google Scholar 

  19. D.W. Langer, C.J. Vesely, Electronic core levels of zinc chalcogenides. Phys. Rev. B 2, 4885–4892 (1970)

    Article  ADS  Google Scholar 

  20. Y. Zhao, X. Fang, Y. Gu, X. Yan, Z. Kang, X. Zheng, P. Lin, L. Zhao, Y. Zhang, Gold nanoparticles coated zinc oxide nanorods as the matrix for enhanced l-lactate sensing. Colloids Surf. B 126, 476–480 (2015)

    Article  Google Scholar 

  21. K. Qian, W. Huang, J. Fang, S. Lv, B. He, Z. Jiang, S. Wei, Low-temperature CO oxidation over Au/ZnO/SiO2 catalysts: some mechanism insights. J. Catal. 255, 269–278 (2008)

    Article  Google Scholar 

  22. P. Luo, C. Li, G. Shi, Synthesis of gold@carbon dots composite nanoparticles for surface enhanced Raman scattering. Phys. Chem. Chem. Phys. 14, 7360–7366 (2012)

    Article  Google Scholar 

  23. M. Altunbek, G. Kuku, M. Culha, Gold nanoparticles in single-cell analysis for surface enhanced Raman scattering. Molecules 21, 1617 (2016)

    Article  Google Scholar 

  24. G. Yang, J. Nanda, B. Wang, G. Chen, D.T. Hallinan, Self-assembly of large gold nanoparticles for surface-enhanced Raman spectroscopy. ACS Appl. Mater. Interfaces 9, 13457–13470 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been supported in part by the Ministry of Science and Technology in TAIWAN under contract numbers MOST 104-2221-E-009-096-MY3, MOST 104-2923-E-009-003-MY3, MOST 104-2221-E-260-002-MY3, MOST 105-2221-E-009-072 and MOST 106-2221-E-009-112-MY3. This work has also been supported by the R&D Piloting Cooperation Projects between Industries and Academia at the Hsinchu Science Park in TAIWAN under Grant number 105A04.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tien-Chang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, SC., Lu, CC., Su, WM. et al. Characterization of spatial manipulation on ZnO nanocomposites consisting of Au nanoparticles, a graphene layer, and ZnO nanorods. Appl. Phys. A 124, 69 (2018). https://doi.org/10.1007/s00339-017-1477-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1477-1

Navigation