Skip to main content
Log in

Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

This work investigates the influence of the direct laser texturing at high fluences (DLT-HF) on surface morphology, chemistry, and wettability. We use a Nd:YAG laser (λ = 1064 nm) with pulse duration of 95 ns to process stainless steel surface. The surface morphology and chemistry after the texturing is examined by using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and electron backscatter diffraction (EBSD), while the surface wettability is evaluated by measuring the static contact angle. Immediately after the texturing, the surface is superhydrophilic in a saturated Wenzel regime. However, this state is not stable and the superhydrophilic-to-superhydrophobic transition happens if the sample is kept in atmospheric air for 30 days. After this period, the laser-textured stainless steel surface expresses lotus-leaf-like behavior. By using a high-speed camera at 10,000 fps, we measured that the water droplet completely rebound from this superhydrophobic surface after the contact time of 12 ms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F.A. Muller, C. Kunz, S. Graf, Materials 9, 476 (2016)

    Article  ADS  Google Scholar 

  2. W. Barthlott, C. Neinhuis, Planta 202, 1 (1997)

    Article  Google Scholar 

  3. T.S. Meiron, A. Marmur, I.S. Saguy, J. Colloid. Interf. Sci 274, 637 (2004)

    Article  ADS  Google Scholar 

  4. X.Y. Wang, D.M. Riffe, Y.-S. Lee, M.C. Downer, Phys. Rev. B 50, 8016 (1994)

    Article  ADS  Google Scholar 

  5. R.N. Wenzel, Ind. Eng. Chem 28, 988 (1936)

    Article  Google Scholar 

  6. A.B.D. Cassie, S. Baxter, T. Faraday Soc 40, 0546 (1944)

    Article  Google Scholar 

  7. T. Darmanin, E.T. de Givenchy, S. Amigoni, F. Guittard, Adv. Mater 25, 1378 (2013)

    Article  Google Scholar 

  8. S. Tawfick, M. De Volder, D. Copic, S.J. Park, C.R. Oliver, E.S. Polsen, M.J. Roberts, A.J. Hart, Adv. Mater., 24, 1628 (2012)

    Article  Google Scholar 

  9. D.Y. Xia, L.M. Johnson, G.P. Lopez, Adv. Mater 24, 1287 (2012)

    Article  Google Scholar 

  10. S.T. Wang, K.S. Liu, X. Yao, L. Jiang, Chem. Rev 115, 8230 (2015)

    Article  Google Scholar 

  11. M.T. Khorasani, H. Mirzadeh, P.G. Sammes, Radiat. Phys. Chem 47, 881 (1996)

    Article  ADS  Google Scholar 

  12. T.O. Yoon, H.J. Shin, S.C. Jeoung, Y.I. Park, Opt. Express 16, 12715 (2008)

    Article  ADS  Google Scholar 

  13. V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, C. Fotakis, Nanotechnology 17, 3234 (2006)

    Article  ADS  Google Scholar 

  14. A.M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Langmuir 25, 4821 (2009)

    Article  Google Scholar 

  15. D.V. Ta, A. Dunn, T.J. Wasley, R.W. Kay, J. Stringer, P.J. Smith, C. Connaughton, J.D. Shephard, Appl. Surf. Sci 357, 248 (2015)

    Article  ADS  Google Scholar 

  16. U. Trdan, M. Hočevar, P. Gregorčič, Corros. Sci 123, 21 (2017)

    Article  Google Scholar 

  17. A.Y. Vorobyev, C.L. Guo, Laser Photonics Rev 7, 385 (2013)

    Article  ADS  Google Scholar 

  18. J. Bonse, S. Hohm, S.V. Kirner, A. Rosenfeld, J. Kruger, IEEE J. Sel. Top. Quant 23, 9000615 (2017)

    Article  Google Scholar 

  19. J. Reif, C. Martens, S. Uhlig, M. Ratzke, O. Varlamova, S. Valette, S. Benayoun, Appl. Surf. Sci., 336, (2015)

  20. P. Gregorčič, M. Sedlaček, B. Podgornik, J. Reif, Appl. Surf. Sci 387, 698 (2016)

    Article  ADS  Google Scholar 

  21. V.D. Ta, A. Dunn, T.J. Wasley, J. Li, R.W. Kay, J. Stringer, P.J. Smith, E. Esenturk, C. Connaughton, J.D. Shephard, Appl. Surf. Sci 365, 153 (2016)

    Article  ADS  Google Scholar 

  22. V.D. Ta, A. Dunn, T.J. Wasley, J. Li, R.W. Kay, J. Stringer, P.J. Smith, E. Esenturk, C. Connaughton, J.D. Shephard, Appl. Surf. Sci 371, 583 (2016)

    Article  ADS  Google Scholar 

  23. M. Zupančič, M. Može, P. Gregorčič, I. Golobič, Appl. Surf. Sci 399, 480 (2017)

    Article  ADS  Google Scholar 

  24. D.M. Chun, C.V. Ngo, K.M. Lee, Cirp Ann-Manuf. Techn 65, 519 (2016)

    Article  Google Scholar 

  25. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater 20, 4049 (2008)

    Article  Google Scholar 

  26. P. Bizi-bandoki, S. Valette, E. Audouard, S. Benayoun, Appl. Surf. Sci 273, 399 (2013)

    Article  ADS  Google Scholar 

  27. A.M. Kietzig, M.N. Mirvakili, S. Kamal, P. Englezos, S.G. Hatzikiriakos, J Adhes Sci Technol 25, 2789 (2011)

    Google Scholar 

  28. M. Martinez-Calderon, A. Rodriguez, A. Dias-Ponte, M.C. Morant-Minana, M. Gomez-Aranzadi, S.M. Olaizola, Appl. Surf. Sci., 374 (2016)

  29. S.V. Kirner, T. Wirth, H. Sturm, J. Krüger, J. Bonse, J. Appl. Phys., 122, (2017)

  30. L.B. Boinovich, A.M. Emelyanenko, A.D. Modestov, A.G. Domantovsky, K.A. Emelyanenko, Acs Appl. Mater. Inter 7, 19500 (2015)

    Article  Google Scholar 

  31. A. Marmur, Langmuir 19, 8343 (2003)

    Article  Google Scholar 

  32. A. Marmur, Soft Matter 2, 12 (2006)

    Article  ADS  Google Scholar 

  33. A. Sarkar, A.M. Kietzig, Chem. Phys. Lett. 574, 106 (2013)

    Article  ADS  Google Scholar 

  34. G. McHale, N.J. Shirtcliffe, M.I. Newton, Analyst 129, 284 (2004)

    Article  ADS  Google Scholar 

  35. L.B. Boinovich, A.M. Emelyanenko, K.A. Emelyanenko, A.G. Domantovsky, A.A. Shiryaev, Appl. Surf. Sci., 379 (2016)

  36. J.Y. Long, M.L. Zhong, P.X. Fan, D.W. Gong, H.J. Zhang, J. Laser Appl., 27 (2015)

  37. F.M. Chang, S.L. Cheng, S.J. Hong, Y.J. Sheng, H.K. Tsao, Appl. Phys. Lett., 96 (2010)

    Article  ADS  Google Scholar 

  38. J.C. Bird, R. Dhiman, H.M. Kwon, K.K. Varanasi, Nature 503, 385 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding Nos. P2-0392 and P2-0132).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Gregorčič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gregorčič, P., Šetina-Batič, B. & Hočevar, M. Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences. Appl. Phys. A 123, 766 (2017). https://doi.org/10.1007/s00339-017-1392-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1392-5

Navigation