Skip to main content
Log in

Stainless steel surface wettability control via laser ablation in external electric field

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Laser ablation of stainless steel in external electric field (up to 10 kV/cm) is experimentally studied. The dependencies of both morphology and chemical properties of surface structures on laser parameters and electric field strength are investigated. Surface wettability properties of the laser-treated samples are considered by means of contact angle measurement. It is shown that under certain conditions laser irradiation in external electric field can render the surface superhydrophobic. Influence of electric field on the laser surface treatment is discussed on basis of its impact on melt solidification and oxidation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Phipps, Laser Ablation and its Applications (Springer, New York, 2007), pp. 480–500

    Book  Google Scholar 

  2. J. Reif, in Laser Processing of Materials: Fundamentals, Applications and Developments, ed. by P. Schaaf (Springer, New York, 2010), pp. 113–126

    Chapter  Google Scholar 

  3. E. Stratakis, E. Barmina, P. Loukakos, G. Shafeev, C. Fotakis, in Ultrafast Laser Processing: From Micro- to Nanoscale, ed. by K. Sugioka, Y. Cheng (Pan Stanford Publishing, Singapore, 2013), pp. 263–352

    Chapter  Google Scholar 

  4. N. Patankar, Langmuir 20, 8209–8213 (2004)

    Article  Google Scholar 

  5. W. Barthlott, C. Neinhuis, Planta 202, 1–8 (1997)

    Article  Google Scholar 

  6. D.H. Kam, S. Bhattacharya, J. Mazumder, J. Micromech. Microeng. 22, 105019 (2012)

    Article  ADS  Google Scholar 

  7. S. Moradi, S. Kamal, P. Englezos, S.G. Hatzikiriakos, Nanotechnology 24, 415302 (2013)

    Article  Google Scholar 

  8. B. Wu, M. Zhou, J. Li, X. Ye, G. Li, L. Cai, Appl. Surf. Sci. 256, 61–66 (2009)

    Article  ADS  Google Scholar 

  9. V. Zorba, L. Persano, D. Pisignano, A. Athanassiou, E. Stratakis, R. Cingolani, P. Tzanetakis, C. Fotakis, Nanotechnology 17, 3234 (2006)

    Article  ADS  Google Scholar 

  10. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049–4054 (2008)

    Article  Google Scholar 

  11. M. Barberoglou, V. Zorba, E. Stratakis, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Appl. Surf. Sci. 255, 5425–5429 (2009)

    Article  ADS  Google Scholar 

  12. F. Liang, J. Lehr, L. Danielczak, R. Leask, A.-M. Kietzig, Int. J. Mol. Sci. 15, 13681–13696 (2014)

    Article  Google Scholar 

  13. C. De Marco, M. Eaton, R. Suriano, S. Turri, M. Levi, R. Ramponi, G. Cerullo, R. Osellame, ACS Appl. Mater. Interfaces 2(8), 2377–2384 (2010)

    Article  Google Scholar 

  14. M.M. Gentleman, J.A. Ruud, Langmuir 26(3), 1408–1411 (2009)

    Article  Google Scholar 

  15. M. Mantel, J.P. Wightman, Surf. Interface Anal. 21(9), 595–605 (1994)

    Article  Google Scholar 

  16. M.S. Brown, C.B. Arnold, in Laser Precision Microfabrication, ed. by K. Sugioka, M. Meunier, A. Pique (Springer, Heidelberg, 2010), pp. 91–120

    Chapter  Google Scholar 

  17. A.M. Kietzig, M.N. Mirvakili, S. Kamal, P. Englezos, S.G. Hatzikiriakos, J. Adhes. Sci. Technol. 25(12), 1293–1303 (2011)

    Article  Google Scholar 

  18. C.C. Ho et al., Adv. Mech. Eng. 5, 156707 (2013)

    Article  Google Scholar 

  19. P. Bechtold, S. Eiselen, M. Schmidt, Phys. Proc. 5, 525–531 (2010)

    Article  ADS  Google Scholar 

  20. H.Y. Zheng, Z.W. Jiang, J. Micromech. Microeng. 20(1), 017001 (2010)

    Article  ADS  Google Scholar 

  21. X.Z. Lin, P. Liu, J.M. Yu, G.W. Yang, J. Phys. Chem. C 113(40), 17543–17547 (2009)

    Article  Google Scholar 

  22. P. Liu et al., J. Phys. Chem. C 112(35), 13450–13456 (2008)

    Article  Google Scholar 

  23. A.A. Serkov, E.V. Barmina, G.A. Shafeev, V.V. Voronov, Appl. Surf. Sci. 348, 16–21 (2015)

    Article  Google Scholar 

  24. J.C. Warner, J.D. Verhoeven, J. Mater. Sci. 8(12), 1817–1822 (1973)

    Article  ADS  Google Scholar 

  25. B. Liu, Z. Zhao, Y. Wang, Z. Chen, J. Cryst. Growth 271(1), 294–301 (2004). http://www.sciencedirect.com/science/article/pii/S0022024804007249

    Article  ADS  Google Scholar 

  26. J. C. Warner, Retrospective Theses and Dissertations. Paper 5873 (1972)

  27. S.I. Dolgaev, J.M. Fernandez-Pradas, J.L. Morenza, P. Serra, G.A. Shafeev, Appl. Phys. A 83(3), 417–420 (2006)

    Article  ADS  Google Scholar 

  28. S.I. Dolgaev, N.A. Kirichenko, A.V. Simakin, G.A. Shafeev, Appl. Surf. Sci. 253(19), 7987–7991 (2007)

    Article  ADS  Google Scholar 

  29. S.I. Dolgaev, S.V. Lavrishev, A.A. Lyalin, A.V. Simakin, V.V. Voronov, G.A. Shafeev, Appl. Phys. A 73(2), 177–181 (2001)

    Article  ADS  Google Scholar 

  30. R. Lloyd, A. Abdolvand, M. Schmidt, P. Crouse, D. Whitehead, Z. Liu, L. Li, Appl. Phys. A 93(1), 117–122 (2008)

    Article  ADS  Google Scholar 

  31. A.-M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Langmuir 25, 4821–4827 (2009)

    Article  Google Scholar 

  32. F. Dausinger, H. Hugel, V. I. Konov, in ALT’02 Proceedings, pp. 106–115 (2003)

  33. P.J. Potts, A Handbook of Silicate Rock Analysis (Blackie, Glasgow, and Chapman and Hall, New York, 1987), pp. 336–337

    Book  Google Scholar 

  34. G.L. Hunt, G.L. Ritchie, Oxid. Met. 2(4), 361–371 (1970)

    Article  Google Scholar 

  35. K.H. Yoon, Y.S. Kwon, J.S. Choi, Mater. Sci. Eng. 18(1), 81–83 (1975)

    Article  Google Scholar 

  36. C.L. Chang et al., Phys. Rev. B 81(8), 085406 (2010)

    Article  ADS  Google Scholar 

  37. S.K. Sankaranarayanan, E. Kaxiras, S. Ramanathan, Energy Environ. Sci. 2(11), 1196–1204 (2009)

    Article  Google Scholar 

  38. N. Cabrera, N.F. Mott, Rep. Prog. Phys. 12(1), 163–184 (1949)

    Article  ADS  Google Scholar 

  39. J. Drzymala, Adv. Colloid Interface Sci. 50, 143–185 (1994)

    Article  Google Scholar 

  40. Y. Hedberg et al., Colloids Surf. B 122, 216–222 (2014)

    Article  Google Scholar 

  41. L.M. White, in Clean Surfaces: Their Preparation and Characterization for Interfacial Studies, ed. by G. Goldfinger (Marcel Dekker, New York, 1970), p. 361

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of the Russian Federation President’s Grants Council for Support of Leading Scientific Schools (Grant #NSh-4484.2014.2), Russian Foundation for Basic Research Grants #15-02-04510 A, #16-02-01054, #15-32-20926, the President of the Russian Federation Grant for State Support of young scientists (Candidates and Doctors of Sciences) MK-4194.2015.2 and the Presidential Scholarship for young scientists and postgraduate students SP-753.2015.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Serkov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Serkov, A.A., Shafeev, G.A., Barmina, E.V. et al. Stainless steel surface wettability control via laser ablation in external electric field. Appl. Phys. A 122, 1067 (2016). https://doi.org/10.1007/s00339-016-0595-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-016-0595-5

Keywords

Navigation