Skip to main content
Log in

Solution-processable alumina: PVP nanocomposite dielectric layer for high-performance organic thin-film transistors

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In this article, we have investigated the effect of nanocomposite gate dielectric layer built by alumina (Al2O3) and poly(4-vinyphenol) (PVP) with solution method which could enhance the dielectric capability and decrease the surface polarity. Then, we used modify layer to optimize the surface morphology of dielectric layer to further improve the insulation capability, and finally we fabricated the high-performance and low-voltage organic thin-film transistors by using this nanocomposite dielectric layer. The result shows that the devices with Al2O3:10%PVP dielectric layer with a modified layer exhibited a mobility of 0.49 cm2/Vs, Ion/Ioff ratio of 7.8 × 104, threshold voltage of − 1.2 V, sub-threshold swing of 0.3 V/dec, and operating voltage as low as − 4 V. The improvement of devices performance was owing to the good insulation capability, appropriate capacitance of dielectric layer, and preferable interface contact, smaller crystalline size of active layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. T. Sekitani, U. Zschieschang, H. Klauk et al., Flexible organic transistors and circuits w1ith extreme bending stability[J]. Nat. Mater. 9(12), 1015–1022 (2010)

    Article  ADS  Google Scholar 

  2. L.L. Chua, J. Zaumseil, J.F. Chang et al., General observation of n-type field-effect behaviour in organic semiconductors[J]. Nature 434(7030), 194–199 (2005)

    Article  ADS  Google Scholar 

  3. K. Myny, S. Steudel, S. Smout et al., Organic RFID transponder chip with data rate compatible with electronic product coding[J]. Org. Electron. 11(7), 1176–1179 (2010)

    Article  Google Scholar 

  4. V. Coropceanu, J. Cornil et al., Charge transport in organic semiconductors[J]. Chem. Rev. 107(4), 926–952 (2007)

    Article  Google Scholar 

  5. S.Y. Yang, S.H. Kim, K. Shin et al., Low-voltage pentacene field-effect transistors with ultrathin polymer gate dielectrics[J]. Appl. Phys. Lett. 88(17), 173507 (2006)

    Article  ADS  Google Scholar 

  6. C. Avis, J. Jang, High-performance solution processed oxide TFT with aluminum oxide gate dielectric fabricated by a sol–gel method[J]. J. Mater. Chem. 21(29), 10649–10652 (2011)

    Article  Google Scholar 

  7. P.K. Nayak, M.N. Hedhili, D. Cha et al., High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric[J]. Appl. Phys. Lett. 103(3), 033518 (2013)

    Article  ADS  Google Scholar 

  8. J.H. Kwon, X. Zhang, S.H. Piao et al., Stability Study of Flexible 6, 13-Bis (triisopropylsilylethynyl) pentacene thin-film transistors with a cross-linked poly (4-vinylphenol)/yttrium oxide nanocomposite gate insulator[J]. Polymers 8(3), 88 (2016)

    Article  Google Scholar 

  9. L.Y. Liang, H.T. Cao, Q. Liu et al., Substrate biasing effect on the physical properties of reactive RF-magnetron-sputtered aluminum oxide dielectric films on ITO glasses[J]. ACS Appl. Mater. Interfaces, 2014, 6(4), pp. 2255–2261

    Article  Google Scholar 

  10. Y. Su, C. Wang, W. Xie et al., Low-voltage organic field-effect transistors (OFETs) with solution-processed metal-oxide as gate dielectric[J]. ACS Appl. Mater. Interfaces, 2011, 3(12), pp. 4662–4667

    Article  Google Scholar 

  11. H.J. Ha, S.W. Jeong, T.Y. Oh et al., Flexible low-voltage pentacene memory thin-film transistors with combustion-processable Al2O3 gate dielectric and Au nanoparticles[J]. J. Phys. D: Appl. Phys. 46(23), 235102 (2013)

    Article  ADS  Google Scholar 

  12. Q.J. Sun, J. Peng, W.H. Chen et al., Low-power organic field-effect transistors and complementary inverter based on low-temperature processed Al2O3 dielectric[J]. Org. Electron. 34, 118–123 (2016)

    Article  Google Scholar 

  13. H. Xu, D. Luo, M. Li et al., A flexible AMOLED display on the PEN substrate driven by oxide thin-film transistors using anodized aluminium oxide as dielectric[J]. J. Mater. Chem. C 2(7), 1255–1259 (2014)

    Article  Google Scholar 

  14. X. Zhang, J.H. Park, S. Baang et al., Poly (4-vinylphenol-co-methyl methacrylate)/titanium dioxide nanocomposite gate insulators for 6, 13-bis (triisopropylsilylethynyl)-pentacene thin-film transistors[J]. J. Korean Phys. Soc. 65(11), 1956–1960 (2014)

    Article  ADS  Google Scholar 

  15. X. Yu, L. Zeng, N. Zhou et al., Ultra-flexible,“invisible” thin-film transistors enabled by amorphous metal oxide/polymer channel layer blends[J]. Adv. Mater. 27(14), 2390–2399 (2015)

    Article  Google Scholar 

  16. X. Ye, H. Lin, X. Yu et al., High performance low-voltage organic field-effect transistors enabled by solution processed alumina and polymer bilayer dielectrics[J]. Synth. Met. 209, 337–342 (2015)

    Article  Google Scholar 

  17. G. Huang, L. Duan, G. Dong et al., High-mobility solution-processed tin oxide thin-film transistors with high-κ alumina dielectric working in enhancement mode[J]. ACS Appl. Mater. Interfaces 6(23), 20786–20794 (2014)

    Article  Google Scholar 

  18. W. Xu, H. Wang, F. Xie et al., Facile and environmentally friendly solution-processed aluminum oxide dielectric for low-temperature, high-performance oxide thin-film transistors[J]. ACS Appl. Mater. Interfaces, 2015, 7(10), pp. 5803–5810

  19. S.E. Fritz, T.W. Kelley, C.D. Frisbie, Effect of dielectric roughness on performance of pentacene TFTs and restoration of performance with a polymeric smoothing layer[J]. J. Phys. Chem. B 109(21), 10574–10577 (2005)

    Article  Google Scholar 

  20. R.W. De Boer, M.E. I, Gershenson, A.F. Morpurgo et al., Organic single-crystal field-effect transistors[J]. Physica Status Solidi (a)., 2004, 201(6), 1302–1331

  21. J.T. Anderson, C.L. Munsee, C.M. Hung et al., Solution-Processed HafSOx and ZircSOx Inorganic Thin-Film Dielectrics and Nanolaminates[J]. Adv. Funct. Mater. 17(13), 2117–2124 (2007)

    Article  Google Scholar 

  22. S.M. Sze, K.K. Ng, Physics of semiconductor devices[M]. Wiley, 2006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Kong, X., Li, Y. et al. Solution-processable alumina: PVP nanocomposite dielectric layer for high-performance organic thin-film transistors. Appl. Phys. A 124, 243 (2018). https://doi.org/10.1007/s00339-017-1377-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1377-4

Navigation