Skip to main content
Log in

Observation of an fcc–Co nanolayer grown between CoO and amorphous Si

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The thermodynamically crystallographic phase of Co at ambient conditions is hexagonal-close-packed. However, it has been found that given a crystallographic support from a suitable substrate, the high-temperature face-centered-cubic phase can be stabilized in thin films. We performed cross-sectional high-resolution transmission electron microscopy on a Si substrate/Si buffer/Co/CoO/Cu\(_{41}\)Ni\(_{59}\)/Nb/Cu\(_{41}\)Ni\(_{59}\)/Si-cap heterostructure (all layer thicknesses in the nanometer range). We analyzed lattice spacings and angles of the Co layer and neighbouring layers. While in the present study, there is no obvious support for an fcc structure by the amorphous Si buffer and the CoO (spinel structure), only an fcc phase of the Co layer (of about 5 nm thickness) is in agreement with the obtained results. However, the detailed mechanism of phase stabilization remains unresolved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. J. Giber, R. Drube, V. Dose, Appl. Phys. A 52, 167 (1991)

    Article  ADS  Google Scholar 

  2. Q. Meng, S. Guo, X. Zhuo, S. Veintemillas-Verdaguer, J. Alloy Compd. 580, 187 (2013)

    Article  Google Scholar 

  3. J.E. Fisher, Thin Solid Films 5, 53 (1970)

    Article  ADS  Google Scholar 

  4. H.L. Gaigher, N.G. van der Berg, Electrochim. Acta 21, 45 (1976)

    Article  Google Scholar 

  5. H. Li, B.P. Tonner, Surface Sci. 237, 141 (1990)

    Article  ADS  Google Scholar 

  6. C.M. Schneider, P. Bressler, P. Schuster, J. Kirschner, J.J. de Miguel, R. Miranda, S. Ferrer, Vacuum 41, 503 (1990)

    Article  ADS  Google Scholar 

  7. J.R. Cerdá, P.L. de Andres, A. Cebollada, R. Miranda, E. Navas, P. Schuster, C.M. Schneider, J. Kirschner, J. Phys. Condens. Matter 5, 2055 (1993)

    Article  ADS  Google Scholar 

  8. C. Rath, J.E. Prieto, S. Müller, R. Miranda, K. Heinz, Phys. Rev. B 55, 10791 (1997)

    Article  ADS  Google Scholar 

  9. C. Chappert, P. Bruno, J. Appl. Phys. 64, 5736 (1988)

    Article  ADS  Google Scholar 

  10. J.L. Beaujour, W. Chen, A.D. Kent, J.Z. Sun, J. Appl. Phys. 99, 08N503 (2006)

    Article  Google Scholar 

  11. C.H. Lee, H. He, F.J. Lamelas, W. Vavra, C. Uher, R. Clarke, Phys. Rev. B 42, 1066(R) (1990)

    Article  ADS  Google Scholar 

  12. W. Wernsdorfer, C. Thirion, N. Demoncy, H. Pascard, D. Mailly, J. Magn. Magn. Mater. 242–245, 132 (2002)

    Article  ADS  Google Scholar 

  13. D. Lenk, R. Morari, V.I. Zdravkov, A.Ullrich, G.Obermeier, C.Müller, A.S. Sidorenko, H.A. Krug von Nidda, S. Horn, L.R. Tagirov, R. Tidecks, Full-Switching FSF-Type Superconducting Spin-Triplet Magnetic Random Access Memory Element (accepted for publication in Phys. Rev. B, 2017)

  14. L. Gragnaniello, S. Agnoli, G. Parteder, A. Barolo, F. Bondino, F. Allegretti, S. Surnev, G. Granozzi, F.P. Netzer, Surf. Sci. 604, 2002 (2010)

    Article  ADS  Google Scholar 

  15. V.I. Zdravkov, D. Lenk, R. Morari, A. Ullrich, G. Obermeier, C. Müller, H.A. Krug von Nidda, A.S. Sidorenko, S. Horn, R. Tidecks, L.R. Tagirov, Appl. Phys. Lett. 103, 062604 (2013)

    Article  ADS  Google Scholar 

  16. J.M. Kehrle, The Fulde-Ferrell Larkin-Ovchinnikov Like State in Bilayers and Trilayers of Superconducting and Ferromagnetic Thin Films (Doctoral Thesis, Universität Augsburg, 2012)

  17. J. Kehrle, V.I. Zdravkov, G. Obermeier, J. Garcia-Garcia, A. Ullrich, C. Müller, R. Morari, A.S. Sidorenko, S. Horn, L.R. Tagirov, R. Tidecks, Ann. Phys. 524, 37 (2012)

    Article  Google Scholar 

  18. E.A. Owen, D.M. Jones, Proc. Phys. Soc. B 67, 456 (1954)

    Article  ADS  Google Scholar 

  19. C. Kittel, Einführung in die Festkörperphysik, 8th edn. (R. Oldenbourg Verlag, München, 1989)

    Google Scholar 

  20. P.J. van der Zaag, J.A. Borchers, Antiferromagnetic-Ferromagnetic Oxide Multilayers: Fe3O4-Based Systems as a Model, in Magnetic Properties of Antiferromagnetic Oxide Materials, ed. by L. Duò, M. Finazzi, F. Ciccacci (Wiley-VCH, Weinheim, 2010)

    Google Scholar 

  21. L. Vegard, Z. Phys. 5, 17 (1921)

    Article  ADS  Google Scholar 

  22. L. Vegard, Z. Kristallogr. 67, 239 (1928)

    Google Scholar 

  23. A.R. Denton, N.W. Ashcroft, Phys. Rev. A 43, 3161 (1991)

    Article  ADS  Google Scholar 

  24. W.P. Davey, Phys. Rev. 25, 753 (1925)

    Article  ADS  Google Scholar 

  25. C.M. Singal, T.P. Das, Phys. Rev. B 16, 5068 (1977)

    Article  ADS  Google Scholar 

  26. C.A.F. Vaz, E.I. Altman, V.E. Henrich, Phys. Rev. B 81, 104428 (2010)

    Article  ADS  Google Scholar 

  27. A. Kelly, K.M. Knowles, Crystallography and Crystal Defects, 2nd edn. (Wiley, Chichester, 2006)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Heidemeyer, B. Knoblich, and W. Reiber for TEM sample preparation.

This work was supported by the Deutsche Forschungsgemeinschaft (DFG) under Grant No. HO 955/9-1.

The partial support by STCU (Grant No. 5982, A.S.S. and R.M.) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Lenk.

Appendix

Appendix

1.1 Crystal structure and lattice constants of the used materials

For the evaluation of the TEM image, knowledge of the lattice constants and the crystallographic structure is essential. The literature values used for the evaluation are given in Table 2.

The lattice constant used for fcc Co (3.543 Å) has been obtained by Cerdá et al. [7] for thin films on Cu substrates at room temperature (they report this value to be in excellent agreement to 3.548 Å , which is an average value of the data reported in Table 1 of the work of Owen et al. [18], obtained by X-ray powder diffraction).

The mixed valence compound Co\(_3\)O\(_4\) crystallizes in a normal spinel structure (see p. 503 of Kittel’s book [19], Fig. 7.1 of the work of van der Zaag and Borchers [20]) with Co\(^{2+}\) and Co\(^{3+}\) ions occupying tetrahedral and octahedral sites, respectively [14], whereas CoO exhibits a rock-salt structure (see p.33 of Kittel’s book [19], Fig. 4.4 of the work of van der Zaag and Borchers [20]), in which all Co\(^{2+}\) ions are octahedrally coordinated to oxygen [14].

Both Cu and Ni crystallize in an fcc structure, so the disordered Cu\(_{41}\)Ni\(_{59}\) alloy formed is also expected to exhibit fcc structure. According to Vegard’s rule [21, 22] (see the work of Denton and Ashcroft [23] for a critical discussion), an estimation of the resulting lattice constant of the alloy can be obtained by linear interpolation between the lattice constant of Cu and Ni (3.597 Å and 3.499 Å, respectively [24]), yielding a value of 3.539 Å for Cu\(_{41}\)Ni\(_{59}\).

Table 2 Lattice parameters for the materials used in the present study. The value for the copper–nickel alloy indicated by the asterisk is obtained by interpolation according to Vegard’s rule (for details, see the text)

The lattice spacing and the included angle for any given pair of layers can be calculated from the standard formulas (see, e.g., Appendix 3 of the book of Kelly and Knowles [27]).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenk, D., Ullrich, A., Zdravkov, V.I. et al. Observation of an fcc–Co nanolayer grown between CoO and amorphous Si. Appl. Phys. A 123, 760 (2017). https://doi.org/10.1007/s00339-017-1375-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1375-6

Navigation