Skip to main content
Log in

Diminution of impact ionization rate of charge carriers in semiconductors due to acoustic phonon scattering

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The effects of acoustic phonon scattering on the impact ionization rate of charge carriers in a semiconductor have been studied in this paper. The inelastic interactions of charge carriers with both deformation and piezoelectric acoustic phonons have been considered. An analytical expression of impact ionization rate has been developed by considering all possible types of inelastic collision mechanisms such as acoustic phonon scattering, optical phonon scattering, and inter-carrier scattering prior to the ionizing collision. The said expression has been used to calculate the impact ionization rate of electrons and holes in 4H-SiC as functions of electric field and doping concentration at room temperature. Numerical results show that the ionization rate of charge carriers deteriorates significantly due to the interactions of those with acoustic phonons. This deterioration is found to be more pronounced in hot carriers. The numerical results calculated from the present model have been compared with the ionization rate data calculated numerically using an earlier developed analytical expression of ionization rates, which does not take into account the acoustic phonon-scattering events. The calculated results have also been compared with earlier reported experimental data. It is observed that the numerical results obtained from the present model are in better agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Acharyya, J.P. Banerjee, Appl. Nanosci. 4, 1 (2014)

    Article  ADS  Google Scholar 

  2. A. Acharyya, S. Banerjee, J.P. Banerjee, J. Comput. Electron. 12(3), 511 (2013)

    Article  Google Scholar 

  3. A. Acharyya, S. Ghosh, Int. J. Electron. 104(12), 1957 (2017)

    Google Scholar 

  4. M. Ghosh, M. Mondal, A. Acharyya, Adv. Optoelectron. 2013, 1 (2013)

    Article  Google Scholar 

  5. B. You, A.Q. Huang, J.K.O. Sin, IEEE Trans. Electron Dev. 48(9), 2143 (2001)

    Article  ADS  Google Scholar 

  6. S.M. Sze, Physics of semiconductor devices, 2nd edn. (Wiley, New York, 1981)

    Google Scholar 

  7. G. Gibbons, Avalanche-diode microwave oscillators (Oxford University Press, Oxford, 1973)

    Google Scholar 

  8. W.N. Grant, Solid State Electron. 16, 1189 (1973)

    Article  ADS  Google Scholar 

  9. M. Ito, S. Kagawa, T. Kaneda, T. Yamaoka, J. Appl. Phys. 49, 4607 (1978)

    Article  ADS  Google Scholar 

  10. C.W. Kao, C.R. Crowell, Solid State Electron. 23, 881 (1980)

    Article  ADS  Google Scholar 

  11. I. Umebu, A.N.M.M. Chowdhury, P.N. Robson, Appl. Phys. Lett. 36, 302 (1980)

    Article  ADS  Google Scholar 

  12. A.O. Konstantinov, Q. Wahab, N. Nordell, U. Lindefelt, Appl. Phys. Lett. 71, 90 (1997)

    Article  ADS  Google Scholar 

  13. K. Kunihiro, K. Kasahara, Y. Takahashi, Y. Ohno, IEEE Electron Dev. Lett. 20, 608 (1999)

    Article  ADS  Google Scholar 

  14. E.A. Konorova, Y.A. Kuznetsov, V.F. Sergienko, S.D. Tkachenko, A.K. Tsikunov, A.V. Spitsyn, Y.Z. Danyushevski, Sov. Phys. Semicond. 17, 146 (1983)

    Google Scholar 

  15. A.P. Dmitriev, A.O. Kanstantinov, D.P. Litvin, V.I. Sankin, Sov. Phys. Semicond. 17, 686 (1983)

    Google Scholar 

  16. R. Ghosh, S.K. Roy, Solid State Electron. 18, 945 (1975)

    Article  ADS  Google Scholar 

  17. S.R. Singh, B.B. Pal, IEEE Trans Electron Dev. 32(3), 599 (1985)

    Article  ADS  Google Scholar 

  18. P.A. Wolff, Phys. Rev. 95, 1415 (1954)

    Article  ADS  Google Scholar 

  19. W. Shockley, Solid State Electron. 2, 35 (1961)

    Article  ADS  Google Scholar 

  20. J.L. Moll, N.I. Meyer, Solid State Electron. 3, 155 (1961)

    Article  ADS  Google Scholar 

  21. J.L. Moll, N.I. Meyer, Solid State Electron. 6, 147 (1963)

    Article  ADS  Google Scholar 

  22. G.A. Baraff, Phys. Rev. 128, 2507 (1962)

    Article  ADS  Google Scholar 

  23. B.K. Ridley, J. Phys. C Solid State Phys. 16, 3375 (1983)

    ADS  Google Scholar 

  24. A. Acharyya, J.P. Banerjee, J. Comput. Electron. 13, 917 (2014)

    Article  Google Scholar 

  25. A. Bhowmick, A. Banerjee, A. Pandey, A. Yadav, P. Pallye, A. Acharyya, IETE J. Res. (2016). doi:10.1080/03772063.2016.1147390

    Google Scholar 

  26. A. Acharyya, S. Chatterjee, A. Das, A. Banerjee, A.R. Pandey, A. Yadav, J.P. Banerjee, J. Comput. Electron. 15, 34 (2016)

    Article  Google Scholar 

  27. S. Midday, D.P. Bhattacharya, Phys. Scr. 83, 1 (2011)

    Article  Google Scholar 

  28. D. Pines, Phys. Rev. 92(3), 626 (1953)

    Article  ADS  Google Scholar 

  29. H. Frohlich, B.V. Paranjape, Proc. Phys. Soc. (London) B69, 21 (1956)

    Article  ADS  Google Scholar 

  30. E.M. Conwell, High field in semiconductors, solid state physics supplement 9 (Academic, New York, 1967)

    Google Scholar 

  31. P. Mukherjee, D. Chatterjee, A. Acharyya, J. Comput. Electron. (2017). doi:10.1007/s10825-017-1014-7

    Google Scholar 

  32. Electronic archive: new semiconductor materials, characteristics and properties. http://www.ioffe.rssi.ru/SVA/NSM/Semicond/SiC/index.html. (2017). Accessed 6 June 2017

  33. K.V. Vassilevski, K. Zekentes, A.V. Zorenko, L.P. Romanov, IEEE Electron Dev. Lett. 21, 485 (2000)

    Article  ADS  Google Scholar 

  34. V.I. Sankin, Semiconductors 36(7), 717 (2002)

    Article  ADS  Google Scholar 

  35. J.C. Burton, L. Sun, F.H. Long, Z.C. Feng, I.T. Ferguson, Phys. Rev. B 59(11), 7282 (1999)

    Article  ADS  Google Scholar 

  36. A. Matulionis, J. Liberis, I. Matulioniene, H.Y. Cha, L.F. Eastman, M.G. Spencer, J. Appl. Phys. 96(11), 6439 (2004)

    Article  ADS  Google Scholar 

  37. P.D. Yoder, V.D. Natoli, R.M. Martin, J. Appl. Phys. 73, 4378 (1993)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author wishes to thank Cooch Behar Government Engineering College, WB, India, for providing excellent research facilities for carrying out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aritra Acharyya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharyya, A. Diminution of impact ionization rate of charge carriers in semiconductors due to acoustic phonon scattering. Appl. Phys. A 123, 629 (2017). https://doi.org/10.1007/s00339-017-1245-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1245-2

Navigation